MUTATIONAL MELTDOWNS IN SEXUAL POPULATIONS (original) (raw)

Journal Article

,

Department of Biology University of Oregon Eugene Oregon 97403

Search for other works by this author on:

,

Department of Computer and Information Science University of Oregon Eugene Oregon 97403

Search for other works by this author on:

Institute für Mathematik Universität Wien A‐1090 Wien Austria

Search for other works by this author on:

Received:

11 February 1994

Published:

01 December 1995

Navbar Search Filter Mobile Enter search term Search

Abstract

Although it is widely acknowledged that the gradual accumulation of mildly deleterious mutations is an important source of extinction for asexual populations, it is generally assumed that this process is of little relevance to sexual species. Here we present results, based on computer simulations and supported by analytical approximations, that indicate that mutation accumulation in small, random‐mating monoecious populations can lead to mean extinction times less than a few hundred to a few thousand generations. Unlike the situation in obligate asexuals in which the mean time to extinction (_t̄_e) increases more slowly than linearly with the population carrying capacity (K), _t̄_e increases approximately exponentially with K in outcrossing sexual populations. The mean time to extinction for obligately selfing populations is shown to be equivalent to that for asexual populations of the same size, but with half the mutation rate and twice the mutational effect; this suggests that obligate selfing, like obligate asexuality, is inviable as a long‐term reproductive strategy. Under all mating systems, the mean time to extinction increases relatively slowly with the logarithm of fecundity, and mutations with intermediate effects (similar to those observed empirically) cause the greatest risk of extinction. Because our analyses ignore sources of demographic and environmental stochasticity, which have synergistic effects that exacerbate the accumulation of deleterious mutations, our results should yield liberal upper bounds to the mean time to extinction caused by mutational degradation. Thus, deleterious mutation accumulation cannot be ruled out generally as a significant source of extinction vulnerability in small sexual populations or as a selective force influencing mating‐system evolution.

Literature Cited

Abramowitz

,

M.

, and

I. A.

Stegun

, eds.

1972

.

Handbook of mathematical functions

.

Dovers‐Publs., Inc.

New York

.

Bell

,

G.

1988a

.

Sex and death in the protozoa

.

Cambridge University Press

,

New York

.

Bell

,

G.

1988b

.

Recombination and the immortality of the germ line

.

Journal of Evolutionary Biology

1

:

67

82

.

Birky

,

C. W.

,Jr., and

J. B.

Walsh

.

1988

.

Effects of linkage on rates of molecular evolution

.

Proceedings of the National Academy of Sciences, USA

85

:

6414

6418

.

Burger

,

R.

, and

W. J.

Ewens

.

1995

.

Fixation probabilities of additive alleles in diploid populations

.

Journal of Mathematical Biology

33

:

557

575

.

Bürger

,

R.

, and

J.

Hofbauer

.

1994

.

Mutation load and quantitative genetic traits

.

Journal of Mathematical Biology

32

:

193

218

.

Caballero

,

A.

, and

W. G.

Hill

.

1992

.

Effects of partial inbreeding on fixation rates and variation of mutant genes

.

Genetics

131

:

493

507

.

Charlesworth

,

B.

1990

.

Mutation‐selection balance and the evolutionary advantage of sex and recombination

.

Genetical Research

55

:

199

221

.

Charlesworth

,

B.

1992

.

Evolutionary rates in partially self‐fertilizing species

.

American Naturalist

140

:

126

148

.

Charlesworth

,

B.

,

D.

Charlesworth

, and

M. T.

Morgan

.

1990

.

Genetic loads and estimates of mutation rates in highly inbred plant populations

.

Nature

347

:

380

382

.

Charlesworth

,

D.

,

M. T.

Morgan

, and

B.

Charlesworth

.

1992

.

The effect of linkage and population size on inbreeding depression due to mutational load

.

59

:

49

61

.

Charlesworth

,

D.

,

M. T.

Morgan

, and

B.

Charlesworth

.

1993

.

Mutation accumulation in finite outbreeding and inbreeding populations

.

Genetical Research

61

:

39

56

.

Clarke

,

B.

1973

.

The effect of mutation on population size

.

Nature

242

:

196

197

.

Crow

,

J. F.

1970

.

Genetic loads and the cost of natural selection

. Pp.

128

177

in

K.‐I.

Kojima

, ed.

Mathematical models in population genetics

.

Springer

,

Berlin

.

Crow

,

J. F.

, and

M.

Kimura

.

1970

.

An introduction to population genetics theory

.

Harper and Row

,

New York

.

Crow

,

J. F.

, and

M.

Kimura

.

1979

.

Efficiency of truncation selection

.

Proceedings of the National Academy of Sciences, USA

76

:

396

399

.

Crow

,

J. F.

, and

M. J.

Simmons

.

1983

.

The mutation load in Drosophila

. Pp.

1

35

. in

M.

Ashburner

, et al., eds.

The genetics and biology of Drosophila,

Vol.

3c

.

Academic Press

,

New York

.

Edwards

,

M. D.

,

C. W.

Stuber

, and

J. F.

Wendel

.

1987

.

Molecular‐marker‐facilitated investigations of quantitative‐trait loci in maize. I. Numbers, genomic distribution, and types of gene action

.

Genetics

116

:

113

125

.

Ewens

,

W. J.

1972

.

Concepts of substitutional load in finite populations

.

Theoretical Population Biology

3

:

153

161

.

Ewens

,

W. J.

1979

.

Mathematical population genetics

.

Springer

,

New York

.

Felsenstein

,

J.

1974

.

The evolutionary advantage of recombination

.

Genetics

78

:

737

756

.

Felsenstein

,

J.

1988

.

Sex and the evolution of recombination

. Pp.

74

86

in

R. E.

Michod

and

B. R.

Levin

, ed.

The evolution of sex

.

Sinauer

,

Sunderland, MSS

.

Fisher

,

R. A.

1930

.

The genetical theory of natural selection

.

Clarendon

,

Oxford, U.K

.

Gabriel

,

W.

, and

R.

Bürger

.

1992

.

Survival of small populations under demographic stochasiticy

.

Theoretical Population Biology

41

:

44

71

.

Gabriel

,

W.

, and

R.

Bürger

.

1994

.

Extinction risk by mutational meltdown: synergistic effects between population regulation and genetic drift

. Pp.

69

84

in

V.

Loeschke

et al., eds.

Conservation genetics

.

Birkhäuser

,

Basel, Switzerland

.

Gabriel

,

W.

,

R.

Bürger

, and

M.

Lynch

.

1991

.

Population extinction by mutational load and demographic stochasticity

. Pp.

49

59

in

A.

Seitz

and

V.

Loeschke

, eds.

Species conservation: a population‐biological approach

.

Birkhäuser

,

Basel

.

Gabriel

,

W.

,

M.

Lynch

, and

R.

Bürger

.

1993

.

Muller's ratchet and mutational meltdowns

.

Evolution

47

:

1744

1757

.

Goodman

,

D.

1987

.

Consideration of stochastic demography in the design and management of biological reserves

.

Natural Resources Modelling

1

:

205

234

.

Gregory

,

W. C.

1965

.

Mutation frequency, magnitude of change, and the probability of improvement in adaptation

.

Radiation Botany

5

(Suppl.):

429

441

.

Haigh

,

J.

1978

.

The accumulation of deleterious genes in a population

.

Theoretical Population Biology

14

:

251

267

.

Haldane

,

J. B. S.

1937

.

The effect of variation on fitness

.

American Naturalist

71

:

337

349

.

Higgs

,

P. G.

1994

.

Error thresholds and stationary mutant distributions in multi‐locus diploid genetics models

.

Genetical Research

63

:

63

78

.

Hill

,

W. G.

, and

A.

Robertson

.

1966

.

The effect of linkage on limits to artificial selection

.

Genetical Research

8

:

269

294

.

Houle

,

D.

1989

.

The maintenance of polygenic variation in finite populations

.

Evolution

43

:

1767

1780

.

Houle

,

D.

,

D. K.

Hoffmaster

,

S.

Assimacopoulos

, and

B.

Charlesworth

.

1992

.

The genomic mutation rate for fitness in Drosophila

.

Nature

359

:

58

60

.

Kimura

,

M.

1962

.

On the probability of fixation of mutant genes in a population

.

Genetics

47

:

713

719

.

Kimura

,

M.

, and

T.

Maruyama

.

1966

.

The mutational load with epistatic gene interactions in fitness

.

Genetics

54

:

1337

1351

.

Kimura

,

M.

,

T.

Maruyama

, and

J. F.

Crow

.

1963

.

The mutation load in small populations

.

Genetics

48

:

1303

1312

.

Kimura

,

M.

, and

T.

Ohta

.

1969

.

The average number of generations until fixation of a mutant gene in a finite population

.

Genetics

61

:

763

771

.

Kondrashov

,

A. S.

1988

.

Deleterious mutations and the evolution of sexual reproduction

.

Nature

334

:

435

440

.

Kondrashov

,

A. S.

, and

J. F.

Crow

.

1988

.

King's formula for the mutation load with epistasis

.

Genetics

120

:

853

856

.

Lande

,

R.

1988

.

Genetics and demography in biological conservation

.

Science

241

:

1455

1460

.

Lande

,

R.

1993

.

Risks of population extinction from demographic and environmental stochasticity, and random catastrophes

.

American Naturalist

142

:

911

927

.

Lande

,

R.

1994

.

Risk of population extinction from new deleterious mutations

.

Evolution

48

:

1460

1469

.

Lande

,

R.

, and

D. W.

Schemske

.

1985

.

The evolution of self‐fertilization and inbreeding depression in plants. I. Genetic models

.

Evolution

39

:

24

40

.

Leigh

,

E. G.

,Jr.

1981

.

The average lifetime of a population in a varying environment

.

Theoretical Population Biology

90

:

213

239

.

Lynch

,

M.

,

R.

Bürger

,

D.

Butcher

, and

W.

Gabriel

.

1993

.

The mutational meltdown in asexual populations

.

Journal of Heredity

84

:

339

344

.

Lynch

,

M.

, and

W.

Gabriel

.

1990

.

Mutation load and the survival of small populations

.

Evolution

44

:

1725

1737

.

Mackay

,

T. F. C.

,

R. F.

Lyman

, and

M. S.

Jackson

.

1992

.

Effects of P element insertions on quantitative traits in Drosophila melanogaster

.

Genetics

130

:

315

332

.

Maynard Smith

,

J.

1978

.

The evolution of sex

.

Cambridge University Press

,

Cambridge

.

Melzer

,

A. L.

, and

J. H.

Koeslag

.

1991

.

Mutations do not accumulate in asexual isolates capable of growth and extinction–Muller's ratchet reexamined

.

Evolution

45

:

649

655

.

Muller

,

H. J.

1964

.

The relation of recombination to mutational advance

.

Mutation Research

1

:

2

9

.

Nei

,

M.

1971

.

Extinction time of deleterious mutant genes in large populations

.

Theoretical Population Biology

2

:

419

425

.

Pamilo

,

P.

,

M.

Nei

, and

W.‐H.

Li

.

1987

.

Accumulation of mutations in sexual and asexual populations

.

Genetical Research

49

:

135

146

.

Robertson

,

A.

1961

.

Inbreeding in artificial selection programmes

.

Genetical Research

2

:

189

194

.

Santiago

,

E.

,

J.

Albornoz

,

A.

Dominguez

,

M. A.

Toro

, and

C.

Lopez‐Fanjul

.

1992

.

The distribution of effects of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster

.

Genetics

132

:

771

781

.

Stephan

,

W.

,

L.

Chao

, and

J. G.

Smale

.

1993

.

The advance of Muller's ratchet in a haploid asexual population: Approximate solutions based on diffusion theory

.

Genetical Res.

61

:

225

231

.

This content is only available as a PDF.

© 1995 The Society for the Study of Evolution

Citations

Views

Altmetric

Metrics

Total Views 205

0 Pageviews

205 PDF Downloads

Since 1/1/2023

Month: Total Views:
January 2023 1
February 2023 15
March 2023 23
April 2023 8
May 2023 13
June 2023 12
July 2023 22
August 2023 10
September 2023 7
October 2023 5
November 2023 6
December 2023 3
January 2024 6
February 2024 6
March 2024 5
April 2024 9
May 2024 6
June 2024 6
July 2024 12
August 2024 4
September 2024 15
October 2024 8
November 2024 3

Citations

288 Web of Science

×

Email alerts

Citing articles via

More from Oxford Academic