MUTATIONAL MELTDOWNS IN SEXUAL POPULATIONS (original) (raw)
Journal Article
,
Department of Biology University of Oregon Eugene Oregon 97403
Search for other works by this author on:
,
Department of Computer and Information Science University of Oregon Eugene Oregon 97403
Search for other works by this author on:
Institute für Mathematik Universität Wien A‐1090 Wien Austria
Search for other works by this author on:
Received:
11 February 1994
Published:
01 December 1995
Navbar Search Filter Mobile Enter search term Search
Abstract
Although it is widely acknowledged that the gradual accumulation of mildly deleterious mutations is an important source of extinction for asexual populations, it is generally assumed that this process is of little relevance to sexual species. Here we present results, based on computer simulations and supported by analytical approximations, that indicate that mutation accumulation in small, random‐mating monoecious populations can lead to mean extinction times less than a few hundred to a few thousand generations. Unlike the situation in obligate asexuals in which the mean time to extinction (_t̄_e) increases more slowly than linearly with the population carrying capacity (K), _t̄_e increases approximately exponentially with K in outcrossing sexual populations. The mean time to extinction for obligately selfing populations is shown to be equivalent to that for asexual populations of the same size, but with half the mutation rate and twice the mutational effect; this suggests that obligate selfing, like obligate asexuality, is inviable as a long‐term reproductive strategy. Under all mating systems, the mean time to extinction increases relatively slowly with the logarithm of fecundity, and mutations with intermediate effects (similar to those observed empirically) cause the greatest risk of extinction. Because our analyses ignore sources of demographic and environmental stochasticity, which have synergistic effects that exacerbate the accumulation of deleterious mutations, our results should yield liberal upper bounds to the mean time to extinction caused by mutational degradation. Thus, deleterious mutation accumulation cannot be ruled out generally as a significant source of extinction vulnerability in small sexual populations or as a selective force influencing mating‐system evolution.
Literature Cited
Abramowitz
,
M.
, and
I. A.
Stegun
, eds.
1972
.
Handbook of mathematical functions
.
Dovers‐Publs., Inc.
New York
.
Bell
,
G.
1988a
.
Sex and death in the protozoa
.
Cambridge University Press
,
New York
.
Bell
,
G.
1988b
.
Recombination and the immortality of the germ line
.
Journal of Evolutionary Biology
1
:
67
–
82
.
Birky
,
C. W.
,Jr., and
J. B.
Walsh
.
1988
.
Effects of linkage on rates of molecular evolution
.
Proceedings of the National Academy of Sciences, USA
85
:
6414
–
6418
.
Burger
,
R.
, and
W. J.
Ewens
.
1995
.
Fixation probabilities of additive alleles in diploid populations
.
Journal of Mathematical Biology
33
:
557
–
575
.
Bürger
,
R.
, and
J.
Hofbauer
.
1994
.
Mutation load and quantitative genetic traits
.
Journal of Mathematical Biology
32
:
193
–
218
.
Caballero
,
A.
, and
W. G.
Hill
.
1992
.
Effects of partial inbreeding on fixation rates and variation of mutant genes
.
Genetics
131
:
493
–
507
.
Charlesworth
,
B.
1990
.
Mutation‐selection balance and the evolutionary advantage of sex and recombination
.
Genetical Research
55
:
199
–
221
.
Charlesworth
,
B.
1992
.
Evolutionary rates in partially self‐fertilizing species
.
American Naturalist
140
:
126
–
148
.
Charlesworth
,
B.
,
D.
Charlesworth
, and
M. T.
Morgan
.
1990
.
Genetic loads and estimates of mutation rates in highly inbred plant populations
.
Nature
347
:
380
–
382
.
Charlesworth
,
D.
,
M. T.
Morgan
, and
B.
Charlesworth
.
1992
.
The effect of linkage and population size on inbreeding depression due to mutational load
.
59
:
49
–
61
.
Charlesworth
,
D.
,
M. T.
Morgan
, and
B.
Charlesworth
.
1993
.
Mutation accumulation in finite outbreeding and inbreeding populations
.
Genetical Research
61
:
39
–
56
.
Clarke
,
B.
1973
.
The effect of mutation on population size
.
Nature
242
:
196
–
197
.
Crow
,
J. F.
1970
.
Genetic loads and the cost of natural selection
. Pp.
128
–
177
in
K.‐I.
Kojima
, ed.
Mathematical models in population genetics
.
Springer
,
Berlin
.
Crow
,
J. F.
, and
M.
Kimura
.
1970
.
An introduction to population genetics theory
.
Harper and Row
,
New York
.
Crow
,
J. F.
, and
M.
Kimura
.
1979
.
Efficiency of truncation selection
.
Proceedings of the National Academy of Sciences, USA
76
:
396
–
399
.
Crow
,
J. F.
, and
M. J.
Simmons
.
1983
.
The mutation load in Drosophila
. Pp.
1
–
35
. in
M.
Ashburner
, et al., eds.
The genetics and biology of Drosophila,
Vol.
3c
.
Academic Press
,
New York
.
Edwards
,
M. D.
,
C. W.
Stuber
, and
J. F.
Wendel
.
1987
.
Molecular‐marker‐facilitated investigations of quantitative‐trait loci in maize. I. Numbers, genomic distribution, and types of gene action
.
Genetics
116
:
113
–
125
.
Ewens
,
W. J.
1972
.
Concepts of substitutional load in finite populations
.
Theoretical Population Biology
3
:
153
–
161
.
Ewens
,
W. J.
1979
.
Mathematical population genetics
.
Springer
,
New York
.
Felsenstein
,
J.
1974
.
The evolutionary advantage of recombination
.
Genetics
78
:
737
–
756
.
Felsenstein
,
J.
1988
.
Sex and the evolution of recombination
. Pp.
74
–
86
in
R. E.
Michod
and
B. R.
Levin
, ed.
The evolution of sex
.
Sinauer
,
Sunderland, MSS
.
Fisher
,
R. A.
1930
.
The genetical theory of natural selection
.
Clarendon
,
Oxford, U.K
.
Gabriel
,
W.
, and
R.
Bürger
.
1992
.
Survival of small populations under demographic stochasiticy
.
Theoretical Population Biology
41
:
44
–
71
.
Gabriel
,
W.
, and
R.
Bürger
.
1994
.
Extinction risk by mutational meltdown: synergistic effects between population regulation and genetic drift
. Pp.
69
–
84
in
V.
Loeschke
et al., eds.
Conservation genetics
.
Birkhäuser
,
Basel, Switzerland
.
Gabriel
,
W.
,
R.
Bürger
, and
M.
Lynch
.
1991
.
Population extinction by mutational load and demographic stochasticity
. Pp.
49
–
59
in
A.
Seitz
and
V.
Loeschke
, eds.
Species conservation: a population‐biological approach
.
Birkhäuser
,
Basel
.
Gabriel
,
W.
,
M.
Lynch
, and
R.
Bürger
.
1993
.
Muller's ratchet and mutational meltdowns
.
Evolution
47
:
1744
–
1757
.
Goodman
,
D.
1987
.
Consideration of stochastic demography in the design and management of biological reserves
.
Natural Resources Modelling
1
:
205
–
234
.
Gregory
,
W. C.
1965
.
Mutation frequency, magnitude of change, and the probability of improvement in adaptation
.
Radiation Botany
5
(Suppl.):
429
–
441
.
Haigh
,
J.
1978
.
The accumulation of deleterious genes in a population
.
Theoretical Population Biology
14
:
251
–
267
.
Haldane
,
J. B. S.
1937
.
The effect of variation on fitness
.
American Naturalist
71
:
337
–
349
.
Higgs
,
P. G.
1994
.
Error thresholds and stationary mutant distributions in multi‐locus diploid genetics models
.
Genetical Research
63
:
63
–
78
.
Hill
,
W. G.
, and
A.
Robertson
.
1966
.
The effect of linkage on limits to artificial selection
.
Genetical Research
8
:
269
–
294
.
Houle
,
D.
1989
.
The maintenance of polygenic variation in finite populations
.
Evolution
43
:
1767
–
1780
.
Houle
,
D.
,
D. K.
Hoffmaster
,
S.
Assimacopoulos
, and
B.
Charlesworth
.
1992
.
The genomic mutation rate for fitness in Drosophila
.
Nature
359
:
58
–
60
.
Kimura
,
M.
1962
.
On the probability of fixation of mutant genes in a population
.
Genetics
47
:
713
–
719
.
Kimura
,
M.
, and
T.
Maruyama
.
1966
.
The mutational load with epistatic gene interactions in fitness
.
Genetics
54
:
1337
–
1351
.
Kimura
,
M.
,
T.
Maruyama
, and
J. F.
Crow
.
1963
.
The mutation load in small populations
.
Genetics
48
:
1303
–
1312
.
Kimura
,
M.
, and
T.
Ohta
.
1969
.
The average number of generations until fixation of a mutant gene in a finite population
.
Genetics
61
:
763
–
771
.
Kondrashov
,
A. S.
1988
.
Deleterious mutations and the evolution of sexual reproduction
.
Nature
334
:
435
–
440
.
Kondrashov
,
A. S.
, and
J. F.
Crow
.
1988
.
King's formula for the mutation load with epistasis
.
Genetics
120
:
853
–
856
.
Lande
,
R.
1988
.
Genetics and demography in biological conservation
.
Science
241
:
1455
–
1460
.
Lande
,
R.
1993
.
Risks of population extinction from demographic and environmental stochasticity, and random catastrophes
.
American Naturalist
142
:
911
–
927
.
Lande
,
R.
1994
.
Risk of population extinction from new deleterious mutations
.
Evolution
48
:
1460
–
1469
.
Lande
,
R.
, and
D. W.
Schemske
.
1985
.
The evolution of self‐fertilization and inbreeding depression in plants. I. Genetic models
.
Evolution
39
:
24
–
40
.
Leigh
,
E. G.
,Jr.
1981
.
The average lifetime of a population in a varying environment
.
Theoretical Population Biology
90
:
213
–
239
.
Lynch
,
M.
,
R.
Bürger
,
D.
Butcher
, and
W.
Gabriel
.
1993
.
The mutational meltdown in asexual populations
.
Journal of Heredity
84
:
339
–
344
.
Lynch
,
M.
, and
W.
Gabriel
.
1990
.
Mutation load and the survival of small populations
.
Evolution
44
:
1725
–
1737
.
Mackay
,
T. F. C.
,
R. F.
Lyman
, and
M. S.
Jackson
.
1992
.
Effects of P element insertions on quantitative traits in Drosophila melanogaster
.
Genetics
130
:
315
–
332
.
Maynard Smith
,
J.
1978
.
The evolution of sex
.
Cambridge University Press
,
Cambridge
.
Melzer
,
A. L.
, and
J. H.
Koeslag
.
1991
.
Mutations do not accumulate in asexual isolates capable of growth and extinction–Muller's ratchet reexamined
.
Evolution
45
:
649
–
655
.
Muller
,
H. J.
1964
.
The relation of recombination to mutational advance
.
Mutation Research
1
:
2
–
9
.
Nei
,
M.
1971
.
Extinction time of deleterious mutant genes in large populations
.
Theoretical Population Biology
2
:
419
–
425
.
Pamilo
,
P.
,
M.
Nei
, and
W.‐H.
Li
.
1987
.
Accumulation of mutations in sexual and asexual populations
.
Genetical Research
49
:
135
–
146
.
Robertson
,
A.
1961
.
Inbreeding in artificial selection programmes
.
Genetical Research
2
:
189
–
194
.
Santiago
,
E.
,
J.
Albornoz
,
A.
Dominguez
,
M. A.
Toro
, and
C.
Lopez‐Fanjul
.
1992
.
The distribution of effects of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster
.
Genetics
132
:
771
–
781
.
Stephan
,
W.
,
L.
Chao
, and
J. G.
Smale
.
1993
.
The advance of Muller's ratchet in a haploid asexual population: Approximate solutions based on diffusion theory
.
Genetical Res.
61
:
225
–
231
.
This content is only available as a PDF.
© 1995 The Society for the Study of Evolution
Citations
Views
Altmetric
Metrics
Total Views 205
0 Pageviews
205 PDF Downloads
Since 1/1/2023
Month: | Total Views: |
---|---|
January 2023 | 1 |
February 2023 | 15 |
March 2023 | 23 |
April 2023 | 8 |
May 2023 | 13 |
June 2023 | 12 |
July 2023 | 22 |
August 2023 | 10 |
September 2023 | 7 |
October 2023 | 5 |
November 2023 | 6 |
December 2023 | 3 |
January 2024 | 6 |
February 2024 | 6 |
March 2024 | 5 |
April 2024 | 9 |
May 2024 | 6 |
June 2024 | 6 |
July 2024 | 12 |
August 2024 | 4 |
September 2024 | 15 |
October 2024 | 8 |
November 2024 | 3 |
Citations
288 Web of Science
×
Email alerts
Citing articles via
More from Oxford Academic