EVOLUTION OF DISPERSAL RATES IN METAPOPULATION MODELS: BRANCHING AND CYCLIC DYNAMICS IN PHENOTYPE SPACE (original) (raw)

Journal Article

,

Zoology Institute University of Basel Rheinsprung 9, CH‐4051 Basel Switzerland

Search for other works by this author on:

Division of Environmental and Evolutionary Biology, Graham Kerr Building University of Glasgow Glasgow G12 8QQ UK

Search for other works by this author on:

Received:

13 December 1996

Published:

01 December 1997

Navbar Search Filter Mobile Enter search term Search

Abstract

We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non‐equilibrium metapopulation dynamics, non‐zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation.

Literature Cited

Abrams

,

P. A.

,

H.

Matsuda

, and

Y.

Harada

.

1993

.

Evolutionary unstable fitness maxima and stable fitness minima of continuous traits

.

Evol. Ecol.

7

:

465

487

.

Bellows

,

T. S.

,Jr.

1981

.

The descriptive properties of some models for density dependence

.

J. Anim. Ecol.

50

:

139

156

.

Blarer

,

A.

, and

M.

Doebeli

.

1996

.

In the red zone

.

Nature

380

:

589

590

.

Cressman

,

R.

1992

.

The stability concept of evolutionary game theory

. Lect. Notes Biomath.

94

.

Springer

,

Berlin, Germany

.

Doebeli

,

M.

1995

.

Dispersal and dynamics

.

Theor. Popul. Biol.

47

:

82

106

.

Doebeli

,

M.

1996

.

A quantitative genetic competition model for sympatric speciation

.

J. Evol. Biol.

9

:

893

909

.

Doebeli

,

M.

1997

.

Invasion of rare mutants does not imply their evolutionary success: a counterexample from metapopulation theory

.

J. Evol. Biol.

In press.

Feder

,

J. L.

1995

.

The effects of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae)

.

Ecology

76

:

801

813

.

Geritz

,

S. A. H.

,

F. J. A.

Jacobs

,

J. S.

van Heerwaarden

,

E.

Kisdi

,

G.

Meszéna

, and

J. A. J.

Metz

.

1997

.

Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree

.

Evol. Ecol.

In press.

Gyllenberg

,

M.

,

G.

Söderbacka

, and

S.

Ericsson

.

1993

.

Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model

.

Math. Biosci.

118

:

25

49

.

Hassell

,

M. P.

1975

.

Density‐dependence in single‐species models

.

J. Anim. Ecol.

44

:

283

296

.

Hastings

,

A.

1983

.

Can spatial variation alone lead to selection for dispersal?

Theor. Popul. Biol.

24

:

244

251

.

Hastings

,

A.

1993

.

Complex interactions between dispersal and dynamics: lessons from coupled logistic equations

.

Ecology

74

:

1362

1372

.

Holt

,

R. D.

1985

.

Population dynamics in two‐patch environments: some anomalous consequences of an optimal habitat distribution

.

Theor. Popul. Biol.

28

:

181

208

.

Holt

,

R. D.

, and

M. A.

McPeek

.

1996

.

Chaotic population dynamics favors the evolution of dispersal

.

Am. Nat.

148

:

709

718

.

Jánosi

,

I. M.

, and

I.

Scheuring

.

1997

.

On the evolution of density dependent dispersal in a spatially structured population model

.

J. theor. Biol.

187

:

397

408

.

Johnson

,

P. A.

,

F. C.

Hoppenstaedt

,

J. J.

Smith

, and

G. L.

Bush

.

1996

.

Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non‐habitat assortative mating

.

Evol. Ecol.

10

:

187

205

.

Kawecki

,

T. J.

1996

.

Sympatric speciation driven by beneficial mutations

.

Proc. R. Soc. Lond. B.

263

:

1515

1520

.

Lloyd

,

A. L.

1995

.

The coupled Logistic map—a simple model for the effects of spatial heterogeneity on population dynamics

.

J. theor. Biol.

173

:

217

230

.

May

,

R. M.

, and

G. F.

Oster

.

1976

.

Bifurcations and dynamic complexity in simple ecological models

.

Am. Nat.

110

:

573

599

.

Maynard Smith

,

J.

1982

. Evolution and the theory of games.

Cambridge Univ. Press

,

Cambridge, U.K.

Maynard Smith

,

J.

, and

M.

Slatkin

.

1973

.

The stability of predator‐prey systems

.

Ecology

54

:

384

391

.

McPeek

,

M. A.

, and

R. D.

Holt

.

1992

.

The evolution of dispersal in spatially and temporally varying environments

.

Am. Nat.

140

:

1010

1027

.

Metz

,

J. A. J.

,

R. M.

Nisbet

, and

S. A. H.

Geritz

.

1992

.

How should we define ‘fitness’ for general ecological scenarios? Trends Ecol

.

Evol.

7

:

198

202

.

Metz

,

J. A. J.

,

S. A. H.

Geritz

,

G.

Meszéna

,

F. J. A.

Jacobs

, and

J. S.

van Heerwaarden

.

1996

.

Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction

. Pp.

183

231

in

S. J.

van Strien

and

S. M.

Verduyn Lunel

, eds. Stochastic and spatial structures of dynamical systems.

North Holland

,

Amsterdam, The Netherlands

.

Rand

,

D. A.

,

H. B.

Wilson

, and

J. M.

McGlade

.

1994

.

Dynamics and evolution: evolutionary stable attractors, invasion exponents and phenotype dynamics

.

Philos. Trans. R. Soc. Lond. B

343

:

261

283

.

Ricker

,

W. E.

1954

.

Stock and recruitment

.

J. Fish. Res. Board Can.

11

:

559

623

.

Roff

,

D. A.

1992

. The evolution of life histories.

Chapman and Hall

,

London

.

Rohani

,

P.

,

R. M.

May

, and

M. P.

Hassell

.

1996

.

Metapopulations and equilibrium stability—the effects of spatial structure

.

J. theor. Biol.

181

:

97

109

.

Schliewen

,

U. K.

,

D.

Tautz

, and

S.

Pääbo

.

1994

.

Sympatric speciation suggested by monophyly of Crater Lake cichlids

.

Nature

368

:

629

632

.

Schluter

,

D.

1994

.

Experimental evidence that competition promotes divergence in adaptive radiation

.

Science

266

:

798

801

.

Stearns

,

S. C.

1992

. The evolution of life histories.

Oxford Univ. Press

,

Oxford

.

Author notes

Corresponding Editor: E. Martins

© 2021, Society for the Study of Evolution

Citations

Views

Altmetric

Metrics

Total Views 129

93 Pageviews

36 PDF Downloads

Since 1/1/2023

Month: Total Views:
January 2023 2
February 2023 2
March 2023 10
June 2023 5
July 2023 5
August 2023 7
September 2023 6
October 2023 6
November 2023 4
December 2023 9
January 2024 8
February 2024 8
March 2024 3
April 2024 7
May 2024 5
June 2024 2
July 2024 18
August 2024 10
September 2024 4
October 2024 8

Citations

153 Web of Science

×

Email alerts

Citing articles via

More from Oxford Academic