The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio (original) (raw)

Journal Article

,

1Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France

Corrrespondence to: G. Fauque, Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France.

Search for other works by this author on:

,

2School of Chemical Sciences, Department of Biochemistry, University of Georgia, Athens, GA 30602, U.S.A.

Search for other works by this author on:

,

3Centro de Quimica Estrutural, Universidade Nova de Lisboa, Complexo I, IST, Av. Rovisco Pais, 1096 Lisboa Cedex, Portugal

Search for other works by this author on:

,

4Department of Physics, Emory University, Atlanta, GA 30322, U.S.A.

Search for other works by this author on:

,

1Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France

Search for other works by this author on:

,

2School of Chemical Sciences, Department of Biochemistry, University of Georgia, Athens, GA 30602, U.S.A.

Search for other works by this author on:

,

3Centro de Quimica Estrutural, Universidade Nova de Lisboa, Complexo I, IST, Av. Rovisco Pais, 1096 Lisboa Cedex, Portugal

Search for other works by this author on:

,

2School of Chemical Sciences, Department of Biochemistry, University of Georgia, Athens, GA 30602, U.S.A.

Search for other works by this author on:

,

1Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France

Search for other works by this author on:

,

3Centro de Quimica Estrutural, Universidade Nova de Lisboa, Complexo I, IST, Av. Rovisco Pais, 1096 Lisboa Cedex, Portugal

Search for other works by this author on:

... Show more

Accepted:

02 November 1988

Published:

01 December 1988

Cite

G. Fauque, H.D. Peck, J.J.G. Moura, B.H. Huynh, Y. Berlier, D.V. DerVartanian, M. Teixeira, A.E. Przybyla, P.A. Lespinat, I. Moura, J. LeGall, The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, FEMS Microbiology Reviews, Volume 4, Issue 4, December 1988, Pages 299–344, https://doi.org/10.1111/j.1574-6968.1988.tb02748.x
Close

Navbar Search Filter Mobile Enter search term Search

Abstract

Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfobibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological ractivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as ‘iron only’ hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containg hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center belived to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2−. It is not present in all species of Desulfovibrio.

The nickel-(iron-sulfur)-containing hydrogenases ([NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-_x_S) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2−. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(ironsulfur)-selenium-containing hydrogenases ([NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) (for abbreviations see appendix) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues. The data suggest that the chemical behavior of the active site nickel is modified by the presence of selenium such that the [NiFeSe] hydrogenase exhibits an H2/HD ratio greater than one in the proton-deuterium exchange reaction and possesses a specific sensitivity to CO and NO2− inhibition, intermediate between that of the [Fe] and [NiFe] hydrogenases.

All of the genes for the small subunits of the three types of hydrogenases code for signal peptides; however, the genes for the large subunits do not appear to code for signal peptides and the mechanism involved in the translocation of the large subunits is of major concern. Studies on the functional role of the three Desulfovibrio hydrogenases are still in their infancy but it appears that multiple hydrogenase activities result from the need to independently regulate various redox couples such as the H2/fumarate and formate/hydrogenlyase couples in E. coli. Alternatively, the three types of hydrogenases have been identified and localized in D. vulgaris (Hildenborough) and appear to be involved in hydrogen cycling and the generation of a proton gradient.

References

[1]

(

1981

)

Hydrogenases

Biochim. Biophys. Acta

,

594

,

105

176

.

[2]

(

1942

)

Fermentative and photochemical production of hydrogen in algae

J. Gen. Physiol.

,

26

,

219

240

.

[3]

(

1970

)

Hydrogen evolution by several algae

Planta (Berl.)

,

91

,

220

226

.

[4]

(

1972

)

The mechanism of hydrogen photoproduction by several algae. II. The contribution of photosystem II

Planta (Berl.)

,

106

,

101

112

.

[5]

(

1973

)

Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism

J. Biol. Chem.

,

248

,

7724

7728

.

[6]

(

1986

)

Expression of hydrogenase activity in barley (Hordeum vulgare L.) after anaerobic stress

Arch. Biochem. Biophys.

,

245

,

174

178

.

[7]

(

1981

)

Fermentation in the rumen and human large intestine

Science

,

213

,

1463

1468

.

[8]

(

1985

)

Importance of hydrogen metabolism in regulation of solventogenesis by Clostridium acetobutylicum

Dev. Ind. Microbiol.

,

26

,

549

556

.

[9]

(

1931

)

XXVII. Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme

Biochem. J. (London)

,

25

,

205

214

.

[9](a)

(

1931

)

XXVIII. Hydrogenase. II. The reduction of sulphate to sulphide by molecular hydrogen

Biochem. J. (London)

,

25

,

215

220

.

[10]

(

1984

)

Hydrogenase, electron transfer proteins and energy coupling in the sulfate-reducing bacteria, Desulfovibrio

Ann. Rev. Microbiol.

,

38

,

551

592

.

[11]

(

1988

)

Dissimilatory reduction of sulfur compounds

, Ed) In

Biology of Anaerobic Microorganisms

pp

587

639

John Wiley and Sons, Inc

,

New York

Chapter 11.

[12]

(

1966

)

Multiple forms of bacterial hydrogenases

J. Bacteriol.

,

92

,

828

838

.

[13]

(

1978

)

Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions

J. Biochem. (Tokyo)

,

84

,

673

679

.

[14]

(

1981

)

Partial purification and characterization of two hydrogenase forms from Oscillatoria limnetica

Biochem. Intl.

,

3

,

301

309

.

[15]

(

1981

)

Occurrence and localization of two distinct hydrogenase in the heterocystous cyanobacterium Anabaena sp. strain 7120

J. Bacteriol.

,

146

,

209

214

.

[16]

(

1983

)

Two hydrogenases with distinct electron carrier specificity and subunit composition in Methanobacterium formicicum

Biochim. Biophys. Acta

,

748

,

8

20

.

[17]

(

1978

)

Isolation and properties of a unidirectional H2-oxidizing hydrogenase from the strictly anaerobic N2-fixing bacterium, Clostridium pasteurianum

Biochem. Biophys. Res. Commun.

,

84

,

1144

1150

.

[18]

(

1980

)

The membrane bound hydrogenase of Alcaligenes eutrophus. II. Localization and immunological comparison with other hydrogenase systems

Antonie van Leeuwenhoek J. Microbiol. Serol.

,

46

,

1

14

.

[19]

(

1987

)

8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum

Biochemistry

,

26

,

4219

4227

.

[20]

(

1981

)

Isolation of two hydrogenase activities in Chromatium

Eur. J. Biochem.

,

114

,

89

96

.

[21]

(

1985

)

Direct mass-spectrometric monitoring of the metabolism and isotope exchange in enzymic and microbiological investigations

In

Gas Enzymology

( , Eds) pp

17

35

D. Reidel Publishing Company

,

Dordrecht, The Netherlands

.

[22]

(

1956

)

A new procedure for assay of bacterial hydrogenases

J. Bacteriol.

,

71

,

70

80

.

[23]

(

1978

)

Reactivity of Desulfovibrio gigas hydrogenase toward artificial and natural electron donors or acceptors

Biochimie (Paris)

,

60

,

315

320

.

[24]

(

1986

)

Molecular Biology of Archaebacteria

J. Bacteriol.

,

168

,

471

478

.

[25]

(

1986

)

Properties of a hydrogen-inhibited mutant of Desulfovibrio desulfuricans (ATCC 27774)

J. Bacteriol.

,

169

,

1335

1337

.

[25](a)

(

1987

)

Genetic transfer in Desulfovibrio desulfuricans

2nd Edition,

84

, In

Proc. Natl. Acad. Sci. U.S.A.

, pp

9128

9130

.

[25](b)

(

1988

)

Molecular biology of redox proteins in sulphate reduction

, 2nd Edition ( , Eds) In

The Nitrogen and Sulphur Cycles

, pp

147

160

Cambridge University Press

,

Cambridge

.

[26]

(

1984

)

Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA

Appl. Environ. Microbiol.

,

48

,

737

742

.

[27]

(

1954

)

Oxidation and evolution of molecular hydrogen by microorganisms

Bacteriol. Revs.

,

18

,

43

73

.

[28]

(

1965

)

Biological formation of molecular hydrogen

Science

,

148

,

186

191

.

[29]

(

1987

)

Nickel enzymes

Biochemistry

,

26

,

4901

4906

.

[30]

(

1987

)

Nickel utilization by microorganisms

Microbiol. Revs.

,

51

,

22

42

.

[31]

(

1988

)

Nickel-containing hydrogenases

2nd Edition (, Ed) Vol.

23

, In

Metals Ions in Biological Systems

, pp

285

314

Marcel Dekker Inc

,

New York and Basel

.

[32]

(

1988

)

[NiFe] hydrogenases from sulfate-reducing bacteria: Nickel catalytic and regulatory roles

In

Bioinorganic Chemistry of Nickel

(,

VCH Publishers

,

Deerfield Beach, Florida

in press.

[33]

(

1985

)

Hydrogenases: structure and applications in hydrogen production

In

Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects

( , Eds) pp

75

102

Society for General Microbiology, Academic Press Inc

,

London

.

[33](a)

(

1988

)

Nickel in hydrogenases from sulfate-reducing, photosynthetic and hydrogen-oxidizing bacteria

In

Bioinorganic Chemistry of Nickel

(,

VCH Publishers

,

Deerfield Beach, Florida

in press.

[34]

(

1981

)

Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria

Ann. Rev. Microbiol.

,

35

,

405

452

.

[34](a)

(

1986

)

Genetics of hydrogenase from lithoautotrophic bacteria

Biochimie

,

68

,

133

145

.

[35]

(

1986

)

Biochemistry, regulation and genetics of hydrogen oxidation in Rhizobium

CRC Crit. Revs. Biotechnology

,

3

,

17

38

.

[36]

(

1987

)

Physiology, biochemistry, and genetics of the uptake hydrogenase in Rhizobia

Ann. Rev. Microbiol.

,

41

,

335

361

.

[36](a)

(

1980

)

Oxygen and hydrogen in biological nitrogen fixation

Ann. Rev. Microbiol.

,

34

,

183

207

.

[37]

(

1984

)

Hydrogenase of purple bacteria: properties and regulation of synthesis

Arch. Microbiol.

,

140

,

86

90

.

[38]

(

1984

)

The physiology and biochemistry of hydrogen metabolism in cyanobacteria

Biochim. Biophys. Acta

,

768

,

227

255

.

[39]

(

1985

)

Hydrogenase, nitrogenase and hydrogen metabolism in the photosynthetic bacteria

Adv. Microb. Physiol.

,

26

,

155

234

.

[40]

(

1971

)

Evidence for the involvement of non-heme iron in the active site of hydrogenase from Desulfovibrio vulgaris

Biochim. Biophys. Acta

,

234

,

525

530

.

[41]

(

1971

)

Structural properties of hydrogenase from Clostridium pasteurianum W5

Biochemistry

,

10

,

2442

2449

.

[42]

(

1971

)

Purification and properties of a hydrogenase from Desulfovibrio vulgaris

J. Bacteriol.

,

105

,

249

258

.

[43]

(

1934

)

The decomposition of sodium formate by Bacterium coli in the presence of heavy water

2nd Edition,

B115

, In

Proc. Roy. Soc. (London)

, pp

373

379

.

[44]

(

1936

)

Mechanism of the catalytic exchange reaction between deuterium and water

Trans. Faraday Soc.

,

32

,

922

932

.

[45]

(

1954

)

The mechanism of action of the enzyme, hydrogenase

J. Amer. Chem. Soc.

,

76

,

3015

3020

.

[46]

(

1987

)

Inhibition studies of three classes of Desulfovibrio hydrogenase: Application to further characterization of the multiple hydrogenases found in Desulfovibrio vulgaris Hildenborough

Biochem. Biophys. Res. Commun.

,

146

,

147

153

.

[47]

(

1987

)

The carbon monoxide inhibition of the proton-deuterium exchange activity of iron, nickel-iron and nickel-iron-selenium hydrogenases from Desulfovibrio vulgaris Hildenborough

Biochem. Soc. Trans.

,

15

,

1050

1051

.

[48]

(

1944

)

Iron deficiency in bacterial metabolism

Arch. Biochem.

,

4

,

75

87

.

[49]

(

1933

)

Wirkung des Lichtes auf die Kohlenoxydhemmung der Buttersäuregärung

Biochem. Z.

,

265

,

245

252

.

[50]

(

1979

)

The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus

Biochim. Biophys. Acta

,

578

,

445

461

.

[51]

(

1946

)

Hydrogenase

Aust. J. Sci. Res.

,

9

,

25

.

[52]

(

1980

)

Properties of the hydrogenase of Megasphaera elsdenii

Eur. J. Biochem.

,

107

,

251

261

.

[53]

(

1974

)

Purification and properties of hydrogenase from Clostridium pasteurianum W5

Biochim. Biophys. Acta

,

371

,

283

298

.

[54]

(

1986

)

On the novel H2-activating iron-sulfur center of the ‘Fe-only’ hydrogenases

Biochimie (Paris)

,

68

,

35

41

.

[55]

(

1982

)

Biochemistry of dissimilatory sulphate reduction

Phil. Trans. R. Soc. Lond.

,

B298

,

443

466

.

[55](a)

(

1982

)

Hydrogenases: physiology, location and relevance for sulfate-reducing and methane-forming bacteria

In

The Biological Chemistry of Iron. NATO Advanced Studies Institutes Series

( , Eds) pp

207

222

D. Reidel Publishing Company

,

Edmonton, Alberta, Canada

.

[56]

(

1982

)

Hydrogenase and other iron-sulfur proteins from the sulfate-reducing and methane-forming bacteria

, Ed) In

Iron-Sulfur Proteins

pp

177

248

Wiley and Sons

,

New York

.

[57]

(

1984

)

The bioenergetics of methanogenesis

Biochim. Biophys. Acta

,

768

,

113

163

.

[57](a)

(

1986

)

Electron transfer reactions in methanogens

FEMS Microbiol. Rev.

,

39

,

259

303

.

[57](b)

(

1988

)

Biochemistry of methane production

, Ed) In

Biology of Anaerobic Microorganisms

pp

707

770

John Wiley and Sons, Inc

,

New York

Chapter 13.

[58]

(

1984

)

Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800)

Eur. J. Biochem.

,

142

,

21

28

.

[59]

(

1985

)

A link between hydrogen and sulfur metabolisms in Methanosarcina barkeri (DSM 800)

, Ed) In

Biotechnological Advances in Processing Municipal Wastes for Fuels and Chemicals

pp

97

111

Energy and Environmental Systems Division, Argonne National Laboratory

.

[59](a)

(

1989

)

Properties of (NiFe) and (NiFeSe) hydrogenases from methanogenic bacteria

In

FEMS Symposium 49: Microbiology of Extreme Environments

( , Eds)

Elsevier Science Publishers B.V

,

Amsterdam

in press.

[60]

(

1982

)

A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue

J. Biol. Chem.

,

257

,

7926

7929

.

[61]

(

1982

)

The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum

FEBS Lett.

,

140

,

311

313

.

[62]

(

1987

)

Locations of the hydrogenases of Methanobacterium formicicum after subcellular fractionation of cell extract

J. Bacteriol.

,

169

,

3823

3825

.

[62](a)

(

1988

)

Hydrogen metabolism and energy conservation in methanogenic bacteria

2nd Edition, In

Ph. D. Thesis

, pp

261

University of Georgia

,

Athens

.

[63]

(

1987

)

Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae

Eur. J. Biochem.

,

169

,

571

577

.

[63](a)

(

1988

)

Localization of the F420-reducing hydrogenase in Methanococcus voltae cells by immunogold technique

Arch. Microbiol.

,

150

,

205

207

.

[64]

(

1987

)

Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei

Can. J. Microbiol.

,

33

,

896

904

.

[65]

(

1988

)

Purification, characterization and catalytic properties of hydrogenases from Methanococcus voltae and from a thermophilic species of Methanosarcina

In

Acta Volume of the Fifth International Symposium on Anaerobic Digestion

( , Eds) pp

35

38

Monduzzi Editore S.p.A

,

Bologna, Italy

.

[66]

(

1986

)

Hydrogenases of phototrophic microorganisms

Biochimie (Paris)

,

68

,

181

187

.

[67]

(

1983

)

Production of molecular hydrogen in microorganisms

2nd Edition (, Ed) Vol.

28

, In

Advances in Biochemical Engineering/Biotechnology

, pp

139

191

Springer Verlag

,

Berlin and New York

.

[67](a)

(

1983

)

Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata

Biochim. Biophys. Acta

,

748

,

116

127

.

[68]

(

1985

)

Properties of two hydrogenases from Escherichia coli

In

Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects

( , Eds) pp

103

107

Society for General Microbiology, Academic Press Inc

,

London

.

[69]

(

1986

)

Purification and properties of membrane-bound hydrogenase isoenzyme I from anaerobically grown Escherichia coli K12

Eur. J. Biochem.

,

156

,

265

275

.

[70]

(

1986

)

Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme II from the membranes of anaerobically grown Escherichia coli

Eur. J. Biochem.

,

156

,

277

284

.

[71]

(

1986

)

Isolation and immunological characterization of the four non-identical subunits of the soluble NAD-linked hydrogenase from Alcaligenes eutrophus H16

Biochimie (Paris)

,

68

,

5

13

.

[72]

(

1984

)

Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1b

Eur. J. Biochem.

,

138

,

533

541

.

[73]

(

1986

)

NAD+-dependent hydrogenase from the hydrogen-oxidizing bacterium Alcaligenes eutrophus Z1. Stabilization against temperature and urea induced inactivation

Biochimie (Paris)

,

68

,

63

68

.

[74]

(

1982

)

Ultrastructural and biochemical characterization of Miyazaki strains of Desulfovibrio vulgaris

J. Gen. Appl. Microbiol.

,

28

,

45

54

.

[74](a)

(

1987

)

Identification of the genes for hydrogenase and cytochrome _c_3 in Desulfovibrio

Can. J. Microbiol.

,

33

,

1006

1010

.

[75]

(

1978

)

Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and properties

FEBS Lett.

,

86

,

122

126

.

[76]

(

1980

)

Effect of growth conditions on the content and O2-stability of hydrogenase in the anaerobic bacterium Desulfovibrio vulgaris (Hildenborough)

FEMS Microbiol. Lett.

,

7

,

35

39

.

[77]

(

1984

)

Desulfovibrio vulgaris hydrogenase: a non-heme iron enzyme lacking nickel that exhibits anomalous EPR and Mössbauer spectra

2nd Edition,

81

, In

Proc. Natl. Acad. Sci. U.S.A.

, pp

3728

3732

.

[78]

(

1983

)

Electron paramagnetic resonance and other properties of hydrogenases isolated from Desulfovibrio vulgaris (strain Hildenborough) and Megasphaera elsdenii

Eur. J. Biochem.

,

136

,

201

207

.

[79]

(

1986

)

The iron-sulfur composition of the active site of hydrogenase from Desulfovibrio vulgaris (Hildenborough) deduced from its subunit structure and total iron-sulfur content

FEBS Lett.

,

203

,

59

63

.

[80]

(

1985

)

Metastable Fe/S clusters. The synthesis, electronic structure, and transformations of the [Fe6S6(L)6]3− clusters (L = Cl−, Br−, RS−, RO−) and the structure of [(C2H5)4]3 [Fe6S6Cl6]

J. Amer. Chem. Soc.

,

107

,

953

961

.

[81]

(

1985

)

Cloning of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and determination of the NH2-terminal sequence

Eur. J. Biochem.

,

148

,

509

514

.

[82]

(

1986

)

Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris

J. Bacteriol.

,

167

,

722

725

.

[83]

(

1976

)

Properties of the purified hydrogenase from the particulate fraction of Desulfovibrio vulgaris Miyazaki

J. Biochem. (Tokyo)

,

79

,

661

671

.

[84]

(

1985

)

Analysis of the active center of hydrogenase from Desulfovibrio vulgaris Miyazaki by magnetic measurements

J. Biochem. (Tokyo)

,

97

,

181

187

.

[85]

(

1987

)

Single crystals of hydrogenase from Desulfovibrio vulgaris Miyazaki F.J.

Biol. Chem.

,

262

,

2823

2825

.

[86]

(

1985

)

Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough)

Eur. J. Biochem.

,

148

,

515

520

.

[87]

(

1973

)

The structure of a bacterial ferredoxin

J. Biol. Chem.

,

248

,

3987

3996

.

[88]

(

1978

)

Interpretation of the Mössbauer spectra of the four-iron ferrodoxin from Bacillus stearothermophilus

Eur. J. Biochem.

,

88

,

135

141

.

[89]

(

1980

)

Evidence for a three-iron center in a ferrodoxin from Desulfovibrio gigas. Mössbauer and EPR studies

J. Biol. Chem.

,

255

,

3242

3244

.

[90]

(

1973

)

Probing iron-sulfur proteins with EPR and ENDOR spectroscopy

2nd Edition (, Ed)

Vol. II

, In

Iron-Sulfur Proteins

, pp

195

238

Academic Press

,

New York

.

[91]

(

1976

)

The iron-sulfur centers and the function of hydrogenase from Clostridium pasteurianum

In

Iron and Copper Proteins

( , Eds) pp

68

82

Plenum Press

,

New York

.

[92]

(

1975

)

Iron-sulfur cluster in hydrogenase from Clostridium pasterianum

2nd Edition,

72

, In

Proc. Natl. Acad. Sci. U.S.A.

, pp

4795

4799

.

[93]

(

1984

)

Mössbauer and electron nuclear double resonance study of oxidized bidirectional hydrogenase from Clostridium pasteurianum W5

J. Biol. Chem.

,

259

,

14328

14331

.

[94]

(

1974

)

On the nature of the spin coupling between the iron-sulfur clusters in the eight-iron ferredoxins

J. Biol. Chem.

,

249

,

4326

4328

.

[95]

(

1986

)

A reversible effect of low carbon monoxide concentrations on the EPR spectra of the periplasmic hydrogenase from Desulfovibrio vulgaris

Biochem. Biophys. Res. Commun.

,

137

,

1086

1093

.

[96]

(

1987

)

The mechanisms of H2 activation and CO binding by hydrogenase I and hydrogenase II of Clostridium pasteurianum

J. Biol. Chem.

,

262

,

15054

15061

.

[97]

(

1986

)

An EPR and electron nuclear double resonance investigation of carbon monoxide binding to hydrogenase I (bidirectional) from Clostridium pasteurianum W5

J. Biol. Chem.

,

261

,

13536

13541

.

[98]

(

1985

)

Magnetic circular dichroism of DCPIP-oxidized Desulfovibrio vulgaris hydrogenase

FEBS Lett.

,

180

,

24

28

.

[99]

(

1980

)

Nitrogenase XII. Mössbauer studies of the MoFe protein from Clostridium pasteurianum W5

Biochim. Biophys. Acta

,

623

,

124

138

.

[100]

(

1984

)

Spectroscopic studies of ferricyanide oxidation of Azotobacter vinelandii ferredoxin I

2nd Edition,

81

, In

Proc. Natl. Acad. Sci. U.S.A.

, pp

1931

1935

.

[101]

(

1985

)

Magnetic susceptibility of hydrogenase from Desulfovibrio vulgaris

J. Biochem. (Tokyo)

,

97

,

1831

1833

.

[102]

(

1987

)

Cloning, characterization and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFe) hydrogenase of Disulfovibrio gigas

DNA

,

6

,

539

551

.

[103]

(

1987

)

Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus

J. Bacteriol.

,

169

,

5401

5407

.

[104]

(

1982

)

Characterization of translational initiation sites in E. coli

Nucleic Acids Res.

,

10

,

2971

2996

.

[105]

(

1983

)

Compilation and analysis of E. coli promoter DNA sequences

Nucleic Acids Res.

,

11

,

2237

2255

.

[106]

(

1986

)

Phylogenetic relationships of sulfate- and sulfur-reducing eubacteria

System. Appl. Microbiol.

,

8

,

32

41

.

[107]

(

1985

)

Signal sequences: the limits of variation

J. Mol. Biol.

,

184

,

99

105

.

[107](a)

(

1988

)

Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli

FEMS Microbiol. Lett.

,

50

,

5

9

.

[108]

(

1986

)

Cloning and sequencing of the gene encoding cytochrome _c_3 from Desulfovibrio vulgaris (Hildenborough)

Eur. J. Biochem.

,

159

,

347

351

.

[109]

(

1987

)

Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli

Eur. J. Biochem.

,

162

,

31

36

.

[110]

(

1980

)

Biological role of nickel

Trends Biochem. Sci.

,

5

,

304

306

.

[111]

(

1975

)

Jack bean urease (EC 3.5.1.5.). A metalloenzyme. A simple biological role for nickel

J. Amer. Chem. Soc.

,

97

,

4131

4133

.

[112]

(

1976

)

Metal ions in enzymes using ammonia or amides

Science

,

191

,

1144

1150

.

[113]

(

1977

)

Nitrogen metabolism in soybean tissue culture. II. Urea utilization and urease synthesis require Ni2+

Plant. Physiol.

,

58

,

827

830

.

[114]

(

1978

)

Rumen bacterial urease requirement for nickel

J. Dairy Sci.

,

60

,

1073

1076

.

[115]

(

1978

)

Nickel for ruminants. I. Influence of dietary nickel on ruminal urease activity

J. Animal Science

,

47

,

1345

1350

.

[116]

(

1965

)

Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains

J. Bacteriol.

,

89

,

1015

1019

.

[117]

(

1980

)

Nickel requirement for chemolithotrophic growth in hydrogeno-xidizing bacteria

Arch. Microbiol.

,

124

,

131

136

.

[117](a)

(

1981

)

Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus

J. Bacteriol.

,

145

,

1144

1149

.

[118]

(

1982

)

Hydrogenase from Methanobacterium thermoautotrophicum

FEBS Lett.

,

140

,

311

313

.

[119]

(

1979

)

Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum

Arch. Microbiol.

,

122

,

117

120

.

[120]

(

1980

)

Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum

Arch. Microbiol.

,

124

,

103

106

.

[121]

(

1980

)

Presence of nickel in factor F430 from Methanobacterium bryantii

Biochem. Biophys. Res. Commun.

,

92

,

1196

1201

.

[122]

(

1982

)

The presence of redoxsensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas

Biochem. Biophys. Res. Commun.

,

106

,

610

616

.

[123]

(

1982

)

Redox properties of the ESR-detectable nickel in hydrogenase from Desulfovibrio gigas

FEBS Lett.

,

142

,

289

292

.

[124]

(

1983

)

Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum

2nd Edition,

80

, In

Proc. Natl. Acad. Sci. U.S.A.

, pp

378

382

.

[125]

(

1983

)

ESR properties of membrane-bound hydrogenase from aerobic hydrogen bacteria

Biochim. Biophys. Acta

,

748

,

353

361

.

[126]

(

1983

)

Magnetic interaction of Ni(III) and the iron-sulfur cluster in hydrogenase from Chromatium vinosum

Biochim. Biophys. Acta

,

766

,

245

258

.

[127]

(

1982

)

Unambigous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase

Biochem. Biophys. Res. Commun.

,

108

,

1388

1393

.

[128]

(

1983

)

Purification and properties of the membrane-bound hydrogenase from Desulfovibrio desulfuricans

Biochem. J.

,

209

,

445

454

.

[129]

(

1983

)

Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans

J. Biol. Chem.

,

257

,

14620

14623

.

[130]

(

1980

)

Biosynthetic evidence for a nickel tetrapyrrole structure of factor F430 from Methanobacterium thermoautotrophicum

FEBS Lett.

,

119

,

118

120

.

[131]

(

1984

)

Nickel. A redox catalytic site in hydrogenase

J. Mol. Catal.

,

23

,

303

314

.

[132]

(

1987

)

On the active site of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox-titration studies

J. Biol. Chem.

,

262

,

795

800

.

[133]

(

1983

)

Desulfovibrio gigas hydrogenase: redox properties of the nickel and iron-sulfur centers

Eur. J. Biochem.

,

130

,

481

484

.

[134]

(

1985

)

Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas

J. Biol. Chem.

,

260

,

8942

8950

.

[135]

(

1987

)

Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desuulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties

Eur. J. Biochem.

,

167

,

47

58

.

[136]

(

1980

)

Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum

J. Biol. Chem.

,

255

,

7174

7180

.

[137]

(

1982

)

EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum

Biochem. Biophys. Res. Commun.

,

108

,

658

663

.

[138]

(

1980

)

The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum

FEMS Microbiol. Lett.

,

7

,

187

189

.

[139]

(

1984

)

Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus

J. Bacteriol.

,

157

,

975

978

.

[140]

(

1983

)

13C and 61Ni isotope substitutions confirm the presence of a nickel (III)-carbon species in acetogenic CO dehydrogenases

Biochem. Biophys. Res. Commun.

,

115

,

658

665

.

[141]

(

1983

)

Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein

J. Biol. Chem.

,

258

,

2364

2369

.

[142]

(

1983

)

Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme

J. Bacteriol.

,

155

,

1224

1237

.

[143]

(

1985

)

Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12

J. Bacteriol.

,

163

,

454

459

.

[144]

(

1982

)

Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus

J. Bacteriol.

,

152

,

42

48

.

[145]

(

1984

)

Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1 b

Eur. J. Biochem.

,

142

,

75

84

.

[146]

(

1986

)

Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing α,β dimer

Biochimie (Paris)

,

68

,

25

34

.

[147]

(

1976

)

The 1st natural nickel metalloenzyme urease

2nd Edition,

35

, In

Fed. Proc.

, pp

1643

.

[148]

(

1986

)

CO2 fixation in acetogenic bacteria: variations on a theme

FEMS Microbiol. Rev.

,

39

,

181

213

.

[149]

(

1984

)

A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. n., a new species of sulfate-reducing bacterium

Biochem. Biophys. Res. Commun.

,

125

,

1025

1032

.

[150]

(

1986

)

Characterization of the soluble hydrogenase from Desulfovibrio africanus

Biochem. Biophys. Res. Commun.

,

139

,

658

665

.

[151]

(

1986

)

The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough)

Biochem. Biophys. Res. Commun.

,

139

,

701

708

.

[152]

(

1986

)

Identification of a membrane-bound hydrogenase of Desulfovibrio vulgaris (Hildenborough)

Biochim. Biophys. Acta

,

851

,

57

64

.

[153]

(

1987

)

Partial characterization of a nickel-three iron-containing hydrogenase from the sulfate-reducing bacterium Desulfovibrio thermophilus

Recueil des Travaux Chimiques des Pays-Bas

,

106

,

232

.

[154]

(

1974

)

Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas

J. Bacteriol.

,

120

,

994

997

.

[155]

(

1978

)

Characterization of the periplasmic hydrogenase from Desulfovibrio gigas

Biochem. Biophys. Res. Commun.

,

82

,

451

461

.

[156]

(

1978

)

Characterization of the periplasmic hydrogenase from Desulfovibrio gigas

In

Hydrogenases: Their Catalytic Activity, Structure and Function

( , Eds) pp

93

106

Erich Goltze KG

,

Göttingen, F.R.G.

[157]

(

1984

)

Reductive activation and redox properties of hydrogenase from Desulfovibrio gigas

Biochim. Biophys. Acta

,

790

,

1

7

.

[158]

(

1987

)

Crystallization, preliminary X-ray study and crystal activity of the hydrogenase from Desulfovibrio gigas

J. Mol. Biol.

,

195

,

969

971

.

[159]

(

1976

)

The growth and preliminary investigation of protein and nucleic acdd crystals for x-ray diffraction analysis

Methods Biochem. Anal.

,

23

,

249

345

.

[160]

(

1981

)

Synthesis and reactions of nickel (III) complexes

Coord. Chem. Rev.

,

39

,

77

119

.

[161]

(

19751976

)

Hydrogenation catalysts: a synthetic hydrogenase model

J. Mol. Cat.

,

1

,

121

135

.

[162]

(

1980

)

Soluble and membrane-bound paramagnetic centers in Methanobacterium bryantii

FEBS Lett.

,

115

,

285

288

.

[163]

(

1982

)

New biological paramagnetic center: octahedrally coordinated nickel (III) in the methanogenic bacteria

Science

,

216

,

1324

1325

.

[164]

(

1986

)

Desulfovibrio gigas hydrogenase: catalytic cycle and activation process

, Ed) In

Frontiers in Bioinorganic Chemistry

pp

3

10

VCH Publishers

,

Deerfield Beach, Florida

.

[165]

(

1987

)

Mössbauer study of D. gigas ferredoxin II and spin-coupling model for the Fe3S4 cluster with valence delocalization

J. Amer. Chem. Soc.

,

109

,

4703

4710

.

[166]

(

1986

)

The pH dependence of proton-deuterium exchange, hydrogen production and uptake catalyzed by hydrogenases from sulfate-reducing bacteria

Biochimie (Paris)

,

68

,

55

61

.

[167]

(

1986

)

Activation and active sites of nickel-containing hydrogenases

Biochimie (Paris)

,

68

,

85

91

.

[168]

(

1982

)

Activation, reduction and proton-deuterium exchange reaction of the periplasmic hydrogenase from Desulfovibrio gigas in relation with the role of cytochrome _c_3

FEBS Lett.

,

140

,

185

188

.

[169]

(

1984

)

Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen

J. Biol. Chem.

,

259

,

11725

11729

.

[170]

(

1985

)

Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for direct interaction with hydrogen

FEBS Lett.

,

179

,

91

97

.

[171]

(

1986

)

Magnetic circular dichroism and electron paramagnetic resonance studies of nickel-containing hydrogenases

, Ed) In

Frontiers in Bioinorganic Chemistry

pp

36

44

VCH Publishers

,

Deerfield Beach, Florida

.

[172]

(

1984

)

X-ray absorption spectroscopy of the nickel in the hydrogenase from Desulfovibrio gigas

J. Amer. Chem. Soc.

,

106

,

6864

6865

.

[173]

(

1986

)

Direct evidence for sulphur a a ligand to nickel in hydrogenase: an EPR study of the enzyme from Wolinella succinogenes enriched in 33S

Biochim. Biophys. Acta

,

874

,

116

127

.

[174]

(

1986

)

Immunological homology between the membrane-bound uptake hydrogenases of Rhizobium japonicum and Escherichia coli

J. Bacteriol.

,

164

,

579

584

.

[174](a)

(

1984

)

Rearrangement of the species and genera of the photosynthetic ‘purple non-sulfur bacteria’

Int. J. Syst. Bacteriol.

,

34

,

340

343

.

[175]

(

1987

)

Immunological and molecular evidence for a membrane-bound, dimeric hydrogenase in Rhodopseudomonas capsulata

Biochim. Biophys. Acta

,

914

,

299

303

.

[176]

(

1979

)

Purification of the membrane-bound hydrogenase of Escherichia coli

Biochem. J.

,

183

,

11

22

.

[177]

(

1987

)

Identification of three classes of hydrogenase in the genus Desulfovibrio

Biochem. Biophys. Res. Commun.

,

149

,

369

377

.

[178]

(

1984

)

Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4)

Eur. J. Biochem.

,

145

,

637

643

.

[178](a)

(

1986

)

Activation and deactivation of the membrane-bound hydrogenase from Desulfovibrio desulfuricans, Norway strain

Biochimie (Paris)

,

68

,

43

48

.

[179]

(

1977

)

Purification and characterization of cytochrome _c_3, ferredoxin, and rubredoxin isolated from Desulfovibrio desulfuricans Norway

J. Bacteriol.

,

129

,

30

38

.

[180]

(

1966

)

Media for sulphur bacteria

Lab. Practice

,

15

,

1239

1244

.

[181]

(

1984

)

The Sulphate-Reducing Bacteria

2nd Edition, pp

208

Cambridge University Press

,

Cambridge

.

[182]

(

1938

)

A study of spore formation and other morphological characteristics of Vibrio desulfuricans

Arch. Mikrobiol.

,

8

,

268

304

.

[183]

(

1965

)

Le cytochrome _c_3 de Desulfovibrio gigas

Biochim. Biophys. Acta

,

99

,

385

387

.

[184]

(

1984

)

Spectroscopic studies of the nature of the iron clusters in the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4)

Eur. J. Biochem.

,

145

,

645

651

.

[184](a)

(

1980

)

Purification and properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans

Can. J. Microbiol.

,

26

,

1214

1223

.

[185]

(

1985

)

Nickel-iron-sulfur-selenium-containing hydrogenases isolated from Desulfovibrio baculatus strain 9974

Rev. Port. Quim.

,

27

,

194

195

.

[186]

(

1985

)

Purification of an hydrogenase from an halophilic sulfate-reducing bacterium: Desulfovibrio salexigens strain British Guiana

Rev. Port. Quim.

,

27

,

196

197

.

[187]

(

1986

)

Purification and characterization of three proteins from a halophilic sulfate-reducing bacterium, Desulfovibrio salexigens

J. Ind. Microbiol.

,

1

,

139

147

.

[188]

(

1986

)

Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens

Biochimie (Paris)

,

68

,

75

84

.

[188](a)

(

1983

)

Resonance Raman studies of beef heart aconitase and a bacterial hydrogenase

J. Biol. Chem.

,

258

,

12771

12774

.

[189]

(

1986

)

Nucleotide sequence and expression of the selenocysteine containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli

,

83

, In

Proc. Natl. Acad. Sci. U.S.A.

, pp

4650

4654

.

[190]

(

1986

)

The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘terminator’ codon

TGA. EMBO J.

,

5

,

1221

1227

.

[191]

(

1982

)

Identification of a selenocysteine-specific aminoacyl transfer RNA from rat liver

Biochim. Biophys. Acta

,

699

,

183

191

.

[192]

(

1986

)

Proton-tritium exchange activity of activated and deactivated forms of Desulfovibrio gigas hydrogenase

Biochim. Biophys. Acta

,

874

,

72

75

.

[193]

(

1982

)

Isotope exchange and discrimination by the H2-oxidizing hydrogenase from soybean root nodules

Biochim. Biophys. Acta

,

700

,

7

15

.

[194]

(

1987

)

A proton-deuterium exchange study of three types of Desulfovibrio hydrogenases

J. Ind. Microbiol.

,

2

,

15

23

.

[195]

(

1961

)

The activation of molecular hydrogen by platinum

J. Am. Chem. Soc.

,

33

,

289

291

.

[196]

(

1963

)

Kinetic studies on hydrogenase

J. Biol. Chem.

,

238

,

2194

2198

.

[197]

(

1973

)

Homogeneous hydrogenation

Wiley

New York

.

[197](a)

(

1982

)

Effect of pH on H-2H exchange, H2 production and H2 uptake, catalysed by the membrane-bound hydrogenase of Paracoccus denitrificans

Biochim. Biophys. Acta

,

681

,

519

529

.

[198]

(

1988

)

Spectroscopic studies of cobalt and nickel-substituted rubredoxin

Recueil des Travaux Chimiques des Pays-Bas

,

106

,

418

.

[198](a)

(

1988

)

Métabolisme bactérien de l'hydrogène. Aspects physiologiques et enzymologiques

, In

Thèse de Doctorat de Biologie

Université Joseph Fourier

,

Grenoble

155

pages.

[199]

(

1973

)

Kinetic studies on hydrogenase. Parahydrogen-orthohydrogen conversion and hydrogen-deuterium exchange reactions

J. Biochem.

,

73

,

1069

1081

.

[200]

(

1985

)

Relations structure-fonction de différentes protéines d'oxydo-réduction isolées de bactéries sulfato-réductrices et méthanigènes

, In

Thèse de Doctorat d'Etat

Université de Technologie de Compiègne

222

pages.

[201]

(

1984

)

The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. A comparison with hydrogenase I

J. Biol. Chem.

,

259

,

7045

7055

.

[202]

(

1987

)

EPR and electron nuclear double resonance investigation of oxidized hydrogenase II (uptake) from Clostridium pasteurianum W5. Effects of carbon monoxide binding

J. Biol. Chem.

,

262

,

6589

6594

.

[203]

(

1985

)

The reactivity of the nickel-containing hydrogenase from Desulfovibrio gigas with oxygen, deuterium and carbon monoxide

Rev. Port. Quim.

,

27

,

70

73

.

[203](a)

(

1986

)

EPR evidence for direct interaction of carbon monoxide with nickel in hydrogenase from Chromatium vinosum

Biochim. Biophys. Acta

,

872

,

208

215

.

[203](b)

(

1971

)

Electron paramagnetic resonance and light absorption studies on c-type cytochromes of the anaerobic sulfate reducer Desulfovibrio

Biochim. Biophys. Acta

,

234

,

499

512

.

[203](c)

(

1971

)

Electron paramagnetic resonance studies on the reaction of exogenous ligands with cytochrome _c_3 from Desulfovibrio vulgaris

Biochim. Biophys. Acta

,

243

,

53

65

.

[204]

(

1985

)

Properties and reactivation of two different deactivated forms of Desulfovibrio gigas hydrogenase

Biochim. Biophys. Acta

,

832

,

69

79

.

[205]

(

1985

)

Nickel controls the reversible anaerobic activation/inactivation of the Desulfovobrio gigas hydrogenase by the redox potential

J. Biol. Chem.

,

260

,

1470

14706

.

[206]

(

1987

)

The activation of the periplasmic [NiFe] hydrogenase of Desulfovibrio gigas by carbon monoxide

FEBS Lett.

,

221

,

241

244

.

[207]

(

1978

)

Fumarate as terminal electron acceptor of phosphorylative electron transport

Biochim. Biophys. Acta

,

505

,

129

145

.

[208]

(

1985

)

Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: Evidence for a third isoenzyme

J. Bacteriol.

,

164

,

1321

1331

.

[209]

(

1984

)

Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum

J. Bacteriol.

,

160

,

466

469

.

[210]

(

1988

)

Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics

( , Eds) In

42nd Symposium of The Society for General Microbiology

, pp

99

132

Cambridge University Press

,

Cambridge

.

[210](a)

(

1971

)

Dinitrophenol-stimulated adenosine triphosphatase activity in extracts of Desulfovibrio gigas

J. Bacteriol.

,

106

,

890

895

.

[211]

(

1981

)

Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria Desulfovibrio sp

FEMS Microbiol. Lett.

,

12

,

47

50

.

[212]

(

1977

)

Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of E. coli. Effects of permeability barriers imposed by the cytoplasmic membrane

Biochem. J.

,

164

,

199

221

.

[213]

(

1986

)

Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrigenase isoenzyme composition in Salmonella typhimurium

J. Bacteriol.

,

168

,

405

411

.

[214]

(

1946

)

The reduction of nitrate, nitrite and hydroxylamine by E. coli

Australian J. Exp. Biol. Med. Sci.

,

24

,

159

167

.

[215]

(

1975

)

Biochemical studies of sulfate-reducing bacteria. XIV. Enzyme levels of adenylyl sulfate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase and adenosine triphosphatase in cells grown on sulfate, sulfite and thiosulfate

J. Biochem. (Tokyo)

,

78

,

1079

1085

.

[216]

(

1986

)

Regulation of hydrogenase activity in the propionate oxidizing sulfate reducing bacterium Desulfobulbus elongatus

In

Biology of Anaerobic Bacteria

( , Eds) pp

23

27

Elsevier Science Publishers B.V

,

Amsterdam

.

[217]

(

1981

)

Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas

J. Bacteriol.

,

147

,

161

169

.

[218]

(

1987

)

Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM 1

J. Biol. Chem.

,

262

,

12275

12282

.

[219]

(

1982

)

Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase

Cell

,

28

,

145

154

.

[220]

(

1986

)

The HTSI gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae

Cell

,

46

,

235

243

.

[221]

(

1978

)

Properties of hydrogenases from the anaerobic bacteria Megasphaera elsdenii and Desulfovibrio vulgaris (Hildenborough)

In

Hydrogenases: Their Catalytic Activity, Structure and Function

( , Eds) pp

125

140

Erich Goltze

,

Göttingen

.

[222]

(

1968

)

Purification and properties of hydrogenases from different origins

Biochim. Biophys. Acta

,

153

,

699

705

.

[223]

(

1984

)

ESR studies of cytochrome _c_3 from Desulfovibrio desulfuricans Norway 4. Midpoint potentials of the four haems and interactions with ferredoxin and colloidal sulphur

Biochim. Biophys. Acta

,

784

,

68

74

.

[224]

(

1987

)

A direct demonstration of hydrogen cycling by Desulfovibrio vulgaris employing membrane-inlet mass spectrometry

FEMS Microbiol. Lett.

,

40

,

295

299

.

[225]

(

1977

)

Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria

Appl. Environ. Microbiol.

,

33

,

1162

1169

.

[226]

(

1984

)

Metabolism of chemoautotrophic anaerobes. Old views and new aspects. The Microbe 1984. Part II

( , Eds) In

36th Symposium of the Society for General Microbiology

, pp

123

168

Cambridge University Press

,

Cambridge

.

[227]

(

1986

)

The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate

J. Gen. Microbiol.

,

132

,

3549

3556

.

[228]

(

1984

)

Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates

J. Bacteriol.

,

159

,

843

849

.

[229]

(

1979

)

Purification and properties of hydrogenase from Megasphaera elsdenii

Eur. J. Biochem.

,

102

,

317

330

.

[230]

(

1981

)

The effects of pH and redox potential on the hydrogen production activity of the hydrogenase from megasphaera elsdenii

Eur. J. Biochem.

,

114

,

209

219

.

[231]

(

1983

)

Kinetic properties of hydrogenase isolated from Desulfovibrio vulgaris (Hildenborough)

Eur. J. Biochem.

,

131

,

81

88

.

[232]

(

1984

)

Hydrogenase from Acetobacterium woodii

Arch. Microbiol.

,

139

,

361

365

.

[233]

(

1988

)

Evidence for selenocysteine coordination to the active site in the (NiFeSe) hydrogenases from Desulfovibrio baculatus

, In

Proc. Natl. Acad. Sci. U.S.A.

in press.

[234]

(

1989

)

EPR studies with 77Se enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus: Evidence for a selenium ligand to the active site nickel

J. Biol. Chem.

, in press.

[235]

(

1977

)

Growth of sulfate-reducing bacteria with sulfur as electron acceptor

Arch. Microbiol.

,

112

,

115

117

.

[236]

(

1988

)

Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974)

Microbiologiya

,

57

,

102

106

.

This content is only available as a PDF.

© 1988 Federation of European Microbiological Societies

Citations

Views

Altmetric

Metrics

Total Views 576

24 Pageviews

552 PDF Downloads

Since 1/1/2017

Month: Total Views:
January 2017 3
February 2017 4
March 2017 3
April 2017 4
May 2017 13
June 2017 9
July 2017 4
August 2017 1
November 2017 1
January 2018 1
February 2018 1
May 2018 3
June 2018 1
July 2018 2
August 2018 3
September 2018 1
October 2018 1
December 2018 2
January 2019 4
February 2019 3
March 2019 7
April 2019 12
May 2019 2
June 2019 3
July 2019 3
August 2019 1
September 2019 2
October 2019 3
November 2019 7
December 2019 3
January 2020 1
February 2020 4
March 2020 1
April 2020 3
May 2020 2
June 2020 4
July 2020 5
August 2020 9
September 2020 4
October 2020 7
November 2020 4
December 2020 8
January 2021 6
February 2021 6
March 2021 8
April 2021 7
May 2021 5
June 2021 10
July 2021 6
August 2021 6
September 2021 5
October 2021 10
November 2021 9
December 2021 5
January 2022 4
February 2022 7
March 2022 8
April 2022 12
May 2022 8
June 2022 9
July 2022 3
August 2022 9
September 2022 4
October 2022 8
November 2022 13
December 2022 7
January 2023 5
February 2023 5
March 2023 3
April 2023 11
May 2023 14
June 2023 14
July 2023 14
August 2023 12
September 2023 17
October 2023 13
November 2023 10
December 2023 12
January 2024 15
February 2024 15
March 2024 18
April 2024 17
May 2024 11
June 2024 11
July 2024 10
August 2024 6
September 2024 6
October 2024 3

Citations

247 Web of Science

×

Email alerts

Citing articles via

More from Oxford Academic