Assessment of Strain Field in Endothelial Cells Subjected to Uniaxial Deformation of Their Substrate (original) (raw)
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
REFERENCES
- Ashkin, A., K. Schütze, M. Dziedzic, U. Euteneuer, and M. Schliwa. Force generation of organelle transport measured _in vivo_by infrared laser trap. _Nature (London)_348:346-348, 1990.
Google Scholar - Barbee, K. A., J. E. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. _Ann. Biomed. Eng._22:14- 22, 1994.
Google Scholar - Davies, P. F., and S. C. Tripathi. Mechanical stress mechanisms of the cell, an endothelial paradigm. _Circ. Res._72:239-245, 1993.
Google Scholar - Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. _J. Biomech. Eng._103:177-185, 1981.
Google Scholar - Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. _Biophys. J._68:2580-2587, 1995.
Google Scholar - Fey, E. G., K. M. Wan, and S. Penman. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: Three-dimensional organization and protein composition. _J. Cell Biol._98:1973-1984, 1984.
Google Scholar - Flaherty, J. T., J. E. Pierce, V. J. Ferrans, D. J. Patel, W. K. Tucker, and D. L. Fry. Endothelial nuclear patterns in canine arterial tree with particular reference to hemodynamic events. _Circ. Res._30:23-33, 1972.
Google Scholar - Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. _Circ. Res._22:165-197, 1968.
Google Scholar - Ives, C. L., S. G. Eskin, and L. V. McIntire. Mechanical effects on endothelial cell morphology: _In vitro_assessment. _In Vivo Cell Dev. Biol._22:500-507, 1986.
Google Scholar - McIntosh, F. C., J. Käs, and P. A. Janmey. Elasticity of semiflexible biopolymer networks. _Phys. Rev. Lett._75:4425- 4428, 1995.
Google Scholar - Moore, J. E., E. Bürki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, and J. J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. _Ann. Biomed. Eng._22:416-422, 1994.
Google Scholar - Pavalko, F. M., and C. A. Otey. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. _Proc. Soc. Exp. Biol. Med._205:282-293, 1994.
Google Scholar - Pienta, K. J., and D. S. Coffey. Nuclear-cytoskeletal interactions: Evidence for physical connections between the nucleus and cell periphery and their alteration by transformation. _J. Cell. Biochem._49:357-365, 1992.
Google Scholar - Satcher, R. L., and C. F. Dewey. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. _Biophys. J._71:109-118, 1996.
Google Scholar - Simon, S. I., and G. W. Schmid-Schönbein. Kinematics of cytoplasmic deformation in neutrophils during active motion. _J. Biomech. Eng._112:303-310, 1990.
Google Scholar - Sims, J. R., S. Karp, and D. E. Ingber. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. _J. Cell. Sci._103:1215-1222, 1992.
Google Scholar - Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. _Science_260:1124-1127, 1993.
Google Scholar - Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, J. J. Meister, E. Burki, and H. R. Brunner. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. _Arterioscler. Thromb. Vasc. Biol._15:1781-1786, 1995.
Google Scholar - Zieman, F., J. Rädler, and E. Sackman. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. _Biophys. J._66:2210-2216, 1994.
Google Scholar