Assessment of Strain Field in Endothelial Cells Subjected to Uniaxial Deformation of Their Substrate (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Ashkin, A., K. Schütze, M. Dziedzic, U. Euteneuer, and M. Schliwa. Force generation of organelle transport measured _in vivo_by infrared laser trap. _Nature (London)_348:346-348, 1990.
    Google Scholar
  2. Barbee, K. A., J. E. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. _Ann. Biomed. Eng._22:14- 22, 1994.
    Google Scholar
  3. Davies, P. F., and S. C. Tripathi. Mechanical stress mechanisms of the cell, an endothelial paradigm. _Circ. Res._72:239-245, 1993.
    Google Scholar
  4. Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. _J. Biomech. Eng._103:177-185, 1981.
    Google Scholar
  5. Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. _Biophys. J._68:2580-2587, 1995.
    Google Scholar
  6. Fey, E. G., K. M. Wan, and S. Penman. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: Three-dimensional organization and protein composition. _J. Cell Biol._98:1973-1984, 1984.
    Google Scholar
  7. Flaherty, J. T., J. E. Pierce, V. J. Ferrans, D. J. Patel, W. K. Tucker, and D. L. Fry. Endothelial nuclear patterns in canine arterial tree with particular reference to hemodynamic events. _Circ. Res._30:23-33, 1972.
    Google Scholar
  8. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. _Circ. Res._22:165-197, 1968.
    Google Scholar
  9. Ives, C. L., S. G. Eskin, and L. V. McIntire. Mechanical effects on endothelial cell morphology: _In vitro_assessment. _In Vivo Cell Dev. Biol._22:500-507, 1986.
    Google Scholar
  10. McIntosh, F. C., J. Käs, and P. A. Janmey. Elasticity of semiflexible biopolymer networks. _Phys. Rev. Lett._75:4425- 4428, 1995.
    Google Scholar
  11. Moore, J. E., E. Bürki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, and J. J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. _Ann. Biomed. Eng._22:416-422, 1994.
    Google Scholar
  12. Pavalko, F. M., and C. A. Otey. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. _Proc. Soc. Exp. Biol. Med._205:282-293, 1994.
    Google Scholar
  13. Pienta, K. J., and D. S. Coffey. Nuclear-cytoskeletal interactions: Evidence for physical connections between the nucleus and cell periphery and their alteration by transformation. _J. Cell. Biochem._49:357-365, 1992.
    Google Scholar
  14. Satcher, R. L., and C. F. Dewey. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. _Biophys. J._71:109-118, 1996.
    Google Scholar
  15. Simon, S. I., and G. W. Schmid-Schönbein. Kinematics of cytoplasmic deformation in neutrophils during active motion. _J. Biomech. Eng._112:303-310, 1990.
    Google Scholar
  16. Sims, J. R., S. Karp, and D. E. Ingber. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. _J. Cell. Sci._103:1215-1222, 1992.
    Google Scholar
  17. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. _Science_260:1124-1127, 1993.
    Google Scholar
  18. Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, J. J. Meister, E. Burki, and H. R. Brunner. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. _Arterioscler. Thromb. Vasc. Biol._15:1781-1786, 1995.
    Google Scholar
  19. Zieman, F., J. Rädler, and E. Sackman. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. _Biophys. J._66:2210-2216, 1994.
    Google Scholar

Download references