Measuring Receptor/Ligand Interaction at the Single-Bond Level: Experimental and Interpretative Issues (original) (raw)

REFERENCES

  1. Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L–selectin tethers and the mechanics of selectin–mediated rolling. J. Cell Biol. 138:1169–1180, 1997.
    Google Scholar
  2. Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P–selectin–carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature (London) 374:539–542, 1995.
    Google Scholar
  3. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225, 1998.
    Google Scholar
  4. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.
    Google Scholar
  5. Berlin, C., R. F. Bargatze, J. Campbell, U. H. von Andrian, C. Szabo, S. R. Hasslen, R. D. Nelson, E. L. Berg, S. L. Erlandsen, and E. C. Butcher. α4 integrins mediate lymphocyte attachment and rolling under physiological flow. Cell 80:413–422, 1995.
    Google Scholar
  6. Bruehl, R. E., K. I. Moore, D. E. Lorant, N. Borregaard, G. A. Zimmerman, R. P. McEver, and D. F. Bainton. Leukocyte activation induces surface redistribution of P–selectin glycoprotein ligand–1. J. Leukoc. Biol. 61:489–499, 1997.
    Google Scholar
  7. Chang, K.–C., D. F. J. Tees, and D. A. Hammer. The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. U.S.A. 97:11262–11267, 2000.
    Google Scholar
  8. Chen, S., and T. A. Springer. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 94:185–200, 1999.
    Google Scholar
  9. Chen, S., and T. A. Springer. Selectin receptor–ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc. Natl. Acad. Sci. U.S.A. 98:950–955, 2001.
    Google Scholar
  10. Chesla, S. E., P. Li, S. Nagarajan, P. Selvaraj, and C. Zhu. The membrane anchor influences ligand binding two–dimensional kinetic rates and three–dimensional affinity of FcγRIII (CD16). J. Biol. Chem. 275:10235–10246, 2000.
    Google Scholar
  11. Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two–dimensional receptor–ligand binding kinetics with micropipette. Biophys. J. 75:1553–1572, 1998.
    Google Scholar
  12. Cozens–Roberts, C., D. A. Lauffenburger, and J. A. Quinn. Receptor–mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys. J. 58:841–856, 1990.
    Google Scholar
  13. Evans, E. Probing the relation between force, lifetime, and chemistry in single molecular bonds. Annu. Rev. Biophys.Biomol. Struct. 30:105–128, 2001.
    Google Scholar
  14. Evans, E., D. Berk, and A. Leung. Detachment of agglutinin–bonded red blood cells. I. Forces to rupture molecular–point attachments. Biophys. J. 59:838–848, 1991.
    Google Scholar
  15. Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997.
    Google Scholar
  16. Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995.
    Google Scholar
  17. Florin, E. L., V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand–receptor pairs. Science 264:415–417, 1994.
    Google Scholar
  18. Grubmüller, H., B. Heymann, and P. Tavan. Ligand binding: Molecular mechanics calculation of the streptavidin–biotin rupture forces. Science 271:997–999, 1996.
    Google Scholar
  19. Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin–mediated neutrophil adhesion. Biophys. J. 63:35–57, 1992.
    Google Scholar
  20. Hasslen, S. R., A. R. Burns, S. I. Simon, C. W. Smith, K. Starr, A. N. Barclay, S. A. Michie, R. D. Nelson, and S. L. Erlandsen. Preservation of spatial organization and antigenicity of leukocyte surface molecules by aldehyde fixation: Flow cytometry and high–resolution FESEM studies of CD62L, CD11b, and Thy–1. J. Histochem. Cytochem. 44:1115–1122, 1996.
    Google Scholar
  21. Izrailev, S., S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. Molecular dynamics study of unbinding of the avidin–biotin complex. Biophys. J. 72:1568–1581, 1997.
    Google Scholar
  22. Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.–M. Benoliel, M.–C. Alessi, S. Kaplanski, and P. Bongrad. Granulocyte–endothelium initial adhesion. Analysis of transient binding events mediated by E–selectin in a laminar shear flow. Biophys. J. 64:1922–1933, 1993.
    Google Scholar
  23. King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys. J. 81:799–813, 2001.
    Google Scholar
  24. Kuo, S. C., D. A. Hammer, and D. A. Lauffenburger. Simulation of detachment of specifically bound particles from surfaces by shear flow. Biophys. J. 73:517–531, 1997.
    Google Scholar
  25. Laurenzi, I. J., and S. L. Diamond. Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils. Biophys. J. 77:1733–1746, 1999.
    Google Scholar
  26. Lee, G. U., D. A. Kidwell, and R. J. Colton. Sensing discrete streptavidin–biotin interactions with atomic force microscopy. Langmuir 10:354–357, 1994.
    Google Scholar
  27. Long, M., H. L. Goldsmith, D. F. Tees, and C. Zhu. Probabilistic modeling of shear–induced formation and breakage of doublets cross–linked by receptor–ligand bonds. Biophys. J. 76:1112–1128, 1999.
    Google Scholar
  28. Long, M., H. Zhao, K.–S. Huang, and C. Zhu. Kinetic measurements of cell surface E–selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29:935–946, 2001.
    Google Scholar
  29. McQuarrie, D. A. Kinetics of small systems I. J. Chem. Phys. 38:433–436, 1963.
    Google Scholar
  30. Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature (London) 397:50–53, 1999.
    Google Scholar
  31. Miyata, H., R. Yasuda, and K. Kinosita. Strength and lifetime of bonds between actin and skeletal muscle alpha–actinin studied with an optical trapping technique. Biochim. Biophys. Acta 1290:83–88, 1996.
    Google Scholar
  32. Pierres, A., A. M. Benoliel, and P. Bongrand. Measuring the lifetime of bonds made between surface–linked molecules. J. Biol. Chem. 270:26586–26592, 1995.
    Google Scholar
  33. Pierres, A., A.–M. Benoliel, and P. Bongrand. Initial steps of cell–substrate adhesion. In: Cell Mechanics and Cellular Engineering, edited by V. C. Mow, F. Guilak, R. Tran–Son–Tay, and R. M. Hochmuth. New York: Springer, 1994, pp. 145–159.
    Google Scholar
  34. Pierres, A., O. Tissot, and P. Bongrand. Analysis of the motion of cells driven along an adhesive surface by a laminar shear flow. In: Studying Cell Adhesion, edited by P. Bongrand, P. Claesson, and A. Curtis. Heidelberg: Springer, 1994, pp. 157–174.
    Google Scholar
  35. Piper, J. W., R. A. Swerlick, and C. Zhu. Determining force dependence of two–dimensional receptor–ligand binding affinity by centrifugation. Biophys. J. 74:492–513, 1998.
    Google Scholar
  36. Ramachandran, V., M. U. Nollert, H. Qiu, W. J. Liu, R. D. Cummings, C. Zhu, and R. P. McEver. Tyrosine replacement in P–selectin glycoprotein ligand–1 affects distinct kinetic and mechanical properties of bonds with P–and L–selectin. Proc. Natl. Acad. Sci. U.S.A. 96:13771–13776, 1999.
    Google Scholar
  37. Ramachandran, V., T. Yago, T. K. Epperson, M. Kobzdej, M. U. Nollert, R. D. Cummings, C. Zhu, and R. P. McEver. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc. Natl. Acad. Sci. U.S.A. 98:10166–10171, 2001.
    Google Scholar
  38. Shao, J. Y., and R. M. Hochmuth. Micropipette suction for measuring pico–Newton forces of adhesion and tether formation from neutrophil membranes. Biophys. J. 71:2892–2901, 1996.
    Google Scholar
  39. Shao, J. Y., and R. M. Hochmuth. Mechanical anchoring strength of L–selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys. J. 77:587–596, 1999.
    Google Scholar
  40. Smith, M. J., E. L. Berg, and M. B. Lawrence. A direct comparison of selectin–mediated transient, adhesive events using high temporal resolution. Biophys. J. 77:3371–3383, 1999.
    Google Scholar
  41. Tees, D. F., O. Coenen, and H. L. Goldsmith. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of breakup. Biophys. J. 65:1318–1334, 1993.
    Google Scholar
  42. Tees, D. F. J., R. E. Waugh, and D. A. Hammer. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J. 80:668–682, 2001.
    Google Scholar
  43. Tha, S. P., J. Shuster, and H. L. Goldsmith. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys. J. 50:1117–1126, 1986.
    Google Scholar
  44. Thoumine, O., P. Kocian, A. Kottelat, and J. J. Meister. Short–term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29:398–408, 2000.
    Google Scholar
  45. van Kooyk, Y., P. Weder, K. Heije, and C. G. Figdor. Extracellular calcium modulates leukocyte function–associated antigen–1 cell surface distribution on T lymphocytes and consequently affects cell adhesion. J. Cell Biol. 124:1061–1070, 1994.
    Google Scholar
  46. Vijayendran, R., D. Hammer, and D. Leckband. Simulations of the adhesion between molecularly bonded surfaces in direct force measurements. J. Chem. Phys. 108:7783–7793, 1998.
    Google Scholar
  47. von Andrian, U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82:989–999, 1995.
    Google Scholar
  48. Williams, J. M., T. Han, and T. P. J. Beebe. Determination of single–bond forces from contact force variances in atomic force microscopy. Langmuir 12:1291–1295, 1996.
    Google Scholar
  49. Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Concurrent binding to multiple receptors: Kinetic rates of CD16b and CD32a for IgG. Biophys. J. 79:1867–1875, 2000.
    Google Scholar
  50. Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Quantifying the impact of membrane microtopology on effective two–dimensional affinity. J. Biol. Chem. 276:13283–13288, 2001.
    Google Scholar
  51. Williams, T. E., and C. Zhu. Concurrent binding to multiple ligands: Kinetic rates of CD16b for membrane–bound IgG1 and IgG2. Biophys. J. 79:1858–1866, 2000.
    Google Scholar
  52. Yap, A. S., W. M. Brieher, M. Priushy, and B. M. Gumbiner. Lateral clustering of the adhesive ectodomain: A fundamental determinant of cadherin function. Curr. Biol. 7:308–315, 1997.
    Google Scholar
  53. Zhu, C., G. Bao, and N. Wang. Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2:189–226, 2000.
    Google Scholar

Download references