Measuring Receptor/Ligand Interaction at the Single-Bond Level: Experimental and Interpretative Issues (original) (raw)
REFERENCES
Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L–selectin tethers and the mechanics of selectin–mediated rolling. J. Cell Biol. 138:1169–1180, 1997. Google Scholar
Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P–selectin–carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature (London) 374:539–542, 1995. Google Scholar
Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225, 1998. Google Scholar
Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978. Google Scholar
Berlin, C., R. F. Bargatze, J. Campbell, U. H. von Andrian, C. Szabo, S. R. Hasslen, R. D. Nelson, E. L. Berg, S. L. Erlandsen, and E. C. Butcher. α4 integrins mediate lymphocyte attachment and rolling under physiological flow. Cell 80:413–422, 1995. Google Scholar
Bruehl, R. E., K. I. Moore, D. E. Lorant, N. Borregaard, G. A. Zimmerman, R. P. McEver, and D. F. Bainton. Leukocyte activation induces surface redistribution of P–selectin glycoprotein ligand–1. J. Leukoc. Biol. 61:489–499, 1997. Google Scholar
Chang, K.–C., D. F. J. Tees, and D. A. Hammer. The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. U.S.A. 97:11262–11267, 2000. Google Scholar
Chen, S., and T. A. Springer. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 94:185–200, 1999. Google Scholar
Chen, S., and T. A. Springer. Selectin receptor–ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc. Natl. Acad. Sci. U.S.A. 98:950–955, 2001. Google Scholar
Chesla, S. E., P. Li, S. Nagarajan, P. Selvaraj, and C. Zhu. The membrane anchor influences ligand binding two–dimensional kinetic rates and three–dimensional affinity of FcγRIII (CD16). J. Biol. Chem. 275:10235–10246, 2000. Google Scholar
Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two–dimensional receptor–ligand binding kinetics with micropipette. Biophys. J. 75:1553–1572, 1998. Google Scholar
Cozens–Roberts, C., D. A. Lauffenburger, and J. A. Quinn. Receptor–mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys. J. 58:841–856, 1990. Google Scholar
Evans, E. Probing the relation between force, lifetime, and chemistry in single molecular bonds. Annu. Rev. Biophys.Biomol. Struct. 30:105–128, 2001. Google Scholar
Evans, E., D. Berk, and A. Leung. Detachment of agglutinin–bonded red blood cells. I. Forces to rupture molecular–point attachments. Biophys. J. 59:838–848, 1991. Google Scholar
Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997. Google Scholar
Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995. Google Scholar
Florin, E. L., V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand–receptor pairs. Science 264:415–417, 1994. Google Scholar
Grubmüller, H., B. Heymann, and P. Tavan. Ligand binding: Molecular mechanics calculation of the streptavidin–biotin rupture forces. Science 271:997–999, 1996. Google Scholar
Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin–mediated neutrophil adhesion. Biophys. J. 63:35–57, 1992. Google Scholar
Hasslen, S. R., A. R. Burns, S. I. Simon, C. W. Smith, K. Starr, A. N. Barclay, S. A. Michie, R. D. Nelson, and S. L. Erlandsen. Preservation of spatial organization and antigenicity of leukocyte surface molecules by aldehyde fixation: Flow cytometry and high–resolution FESEM studies of CD62L, CD11b, and Thy–1. J. Histochem. Cytochem. 44:1115–1122, 1996. Google Scholar
Izrailev, S., S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. Molecular dynamics study of unbinding of the avidin–biotin complex. Biophys. J. 72:1568–1581, 1997. Google Scholar
Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.–M. Benoliel, M.–C. Alessi, S. Kaplanski, and P. Bongrad. Granulocyte–endothelium initial adhesion. Analysis of transient binding events mediated by E–selectin in a laminar shear flow. Biophys. J. 64:1922–1933, 1993. Google Scholar
King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys. J. 81:799–813, 2001. Google Scholar
Kuo, S. C., D. A. Hammer, and D. A. Lauffenburger. Simulation of detachment of specifically bound particles from surfaces by shear flow. Biophys. J. 73:517–531, 1997. Google Scholar
Laurenzi, I. J., and S. L. Diamond. Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils. Biophys. J. 77:1733–1746, 1999. Google Scholar
Lee, G. U., D. A. Kidwell, and R. J. Colton. Sensing discrete streptavidin–biotin interactions with atomic force microscopy. Langmuir 10:354–357, 1994. Google Scholar
Long, M., H. L. Goldsmith, D. F. Tees, and C. Zhu. Probabilistic modeling of shear–induced formation and breakage of doublets cross–linked by receptor–ligand bonds. Biophys. J. 76:1112–1128, 1999. Google Scholar
Long, M., H. Zhao, K.–S. Huang, and C. Zhu. Kinetic measurements of cell surface E–selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29:935–946, 2001. Google Scholar
McQuarrie, D. A. Kinetics of small systems I. J. Chem. Phys. 38:433–436, 1963. Google Scholar
Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature (London) 397:50–53, 1999. Google Scholar
Miyata, H., R. Yasuda, and K. Kinosita. Strength and lifetime of bonds between actin and skeletal muscle alpha–actinin studied with an optical trapping technique. Biochim. Biophys. Acta 1290:83–88, 1996. Google Scholar
Pierres, A., A. M. Benoliel, and P. Bongrand. Measuring the lifetime of bonds made between surface–linked molecules. J. Biol. Chem. 270:26586–26592, 1995. Google Scholar
Pierres, A., A.–M. Benoliel, and P. Bongrand. Initial steps of cell–substrate adhesion. In: Cell Mechanics and Cellular Engineering, edited by V. C. Mow, F. Guilak, R. Tran–Son–Tay, and R. M. Hochmuth. New York: Springer, 1994, pp. 145–159. Google Scholar
Pierres, A., O. Tissot, and P. Bongrand. Analysis of the motion of cells driven along an adhesive surface by a laminar shear flow. In: Studying Cell Adhesion, edited by P. Bongrand, P. Claesson, and A. Curtis. Heidelberg: Springer, 1994, pp. 157–174. Google Scholar
Piper, J. W., R. A. Swerlick, and C. Zhu. Determining force dependence of two–dimensional receptor–ligand binding affinity by centrifugation. Biophys. J. 74:492–513, 1998. Google Scholar
Ramachandran, V., M. U. Nollert, H. Qiu, W. J. Liu, R. D. Cummings, C. Zhu, and R. P. McEver. Tyrosine replacement in P–selectin glycoprotein ligand–1 affects distinct kinetic and mechanical properties of bonds with P–and L–selectin. Proc. Natl. Acad. Sci. U.S.A. 96:13771–13776, 1999. Google Scholar
Ramachandran, V., T. Yago, T. K. Epperson, M. Kobzdej, M. U. Nollert, R. D. Cummings, C. Zhu, and R. P. McEver. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc. Natl. Acad. Sci. U.S.A. 98:10166–10171, 2001. Google Scholar
Shao, J. Y., and R. M. Hochmuth. Micropipette suction for measuring pico–Newton forces of adhesion and tether formation from neutrophil membranes. Biophys. J. 71:2892–2901, 1996. Google Scholar
Shao, J. Y., and R. M. Hochmuth. Mechanical anchoring strength of L–selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys. J. 77:587–596, 1999. Google Scholar
Smith, M. J., E. L. Berg, and M. B. Lawrence. A direct comparison of selectin–mediated transient, adhesive events using high temporal resolution. Biophys. J. 77:3371–3383, 1999. Google Scholar
Tees, D. F., O. Coenen, and H. L. Goldsmith. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of breakup. Biophys. J. 65:1318–1334, 1993. Google Scholar
Tees, D. F. J., R. E. Waugh, and D. A. Hammer. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J. 80:668–682, 2001. Google Scholar
Tha, S. P., J. Shuster, and H. L. Goldsmith. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys. J. 50:1117–1126, 1986. Google Scholar
Thoumine, O., P. Kocian, A. Kottelat, and J. J. Meister. Short–term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29:398–408, 2000. Google Scholar
van Kooyk, Y., P. Weder, K. Heije, and C. G. Figdor. Extracellular calcium modulates leukocyte function–associated antigen–1 cell surface distribution on T lymphocytes and consequently affects cell adhesion. J. Cell Biol. 124:1061–1070, 1994. Google Scholar
Vijayendran, R., D. Hammer, and D. Leckband. Simulations of the adhesion between molecularly bonded surfaces in direct force measurements. J. Chem. Phys. 108:7783–7793, 1998. Google Scholar
von Andrian, U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82:989–999, 1995. Google Scholar
Williams, J. M., T. Han, and T. P. J. Beebe. Determination of single–bond forces from contact force variances in atomic force microscopy. Langmuir 12:1291–1295, 1996. Google Scholar
Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Concurrent binding to multiple receptors: Kinetic rates of CD16b and CD32a for IgG. Biophys. J. 79:1867–1875, 2000. Google Scholar
Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Quantifying the impact of membrane microtopology on effective two–dimensional affinity. J. Biol. Chem. 276:13283–13288, 2001. Google Scholar
Williams, T. E., and C. Zhu. Concurrent binding to multiple ligands: Kinetic rates of CD16b for membrane–bound IgG1 and IgG2. Biophys. J. 79:1858–1866, 2000. Google Scholar
Yap, A. S., W. M. Brieher, M. Priushy, and B. M. Gumbiner. Lateral clustering of the adhesive ectodomain: A fundamental determinant of cadherin function. Curr. Biol. 7:308–315, 1997. Google Scholar
Zhu, C., G. Bao, and N. Wang. Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2:189–226, 2000. Google Scholar