Simulation of Blast-Induced Early-Time Intracranial Wave Physics leading to Traumatic Brain Injury (original) (raw)

Skip Nav Destination

Research Papers

Paul A. Taylor,

Department of Penetration Systems,

Sandia National Laboratories

, Albuquerque, NM 87185

Search for other works by this author on:

Corey C. Ford

Department of Neurology,

University of New Mexico Health Sciences Center

, Albuquerque, NM 87131-0001

Search for other works by this author on:

Crossmark: Check for Updates

Paul A. Taylor

Department of Penetration Systems,

Sandia National Laboratories

, Albuquerque, NM 87185

Corey C. Ford

Department of Neurology,

University of New Mexico Health Sciences Center

, Albuquerque, NM 87131-0001

J Biomech Eng. Jun 2009, 131(6): 061007 (11 pages)

Published Online: April 27, 2009

Article history

Received:

February 11, 2008

Revised:

February 26, 2009

Published:

April 27, 2009

The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (⁠1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

2.

Fischer

,

H.

, 2007, “

United States Military Casualty Statistics: Operation Iraqi Freedom and Operation Enduring Freedom

,” Library of Congress, Washington, DC, Technical Report No. RS22452.

3.

Warden

,

D.

, 2006, “

Military TBI During the Iraq and Afghanistan Wars

,”

J. Head Trauma Rehabil.

0885-9701,

21

(

5

), pp.

398

402

.

4.

DePalma

,

R. G.

,

Burris

,

D. G.

,

Champion

,

H. R.

, and

Hodgson

,

M. J.

, 2005, “

Blast Injuries

,”

N. Engl. J. Med.

0028-4793,

352

(

13

), pp.

1335

1342

.

5.

Taber

,

K. H.

,

Warden

,

D. L.

, and

Hurley

,

R. A.

, 2006, “

Blast-Related Traumatic Brain Injury: What Is Known?

J. Neuropsychiatry Clin. Neurosci.

0895-0172,

18

(

2

), pp.

141

145

.

6.

Buki

,

A.

, and

Povlishock

,

J. T.

, 2006, “

All Roads Lead to Disconnection? – Traumatic Axonal Injury Revisited

,”

Acta Neurochir. Suppl. (Wien)

0065-1419,

148

(

2

), pp.

181

193

.

7.

Smith

,

D. H.

,

Meaney

,

D. F.

, and

Shull

,

W. H.

, 2003, “

Diffuse Axonal Injury in Head Trauma

,”

J. Head Trauma Rehabil.

0885-9701,

18

(

4

), pp.

307

316

.

8.

Adams

,

J. H.

,

Graham

,

D. I.

,

Murray

,

L. S.

, and

Scott

,

G.

, 1982, “

Diffuse Axonal Injury Due to Nonmissile Head Injury in Humans: An Analysis of 45 Cases

,”

Ann. Neurol.

0364-5134,

12

(

6

), pp.

557

563

.

9.

Graham

,

D.

,

Gennarelli

,

T.

, and

McIntosh

,

T.

, 2002,

Greenfield’s Neuropathology

, Vol.

2

,

Trauma, Arnold, Hodder Headline Group

,

London

.

10.

Smith

,

D. H.

,

Chen

,

X. H.

,

Xu

,

B. N.

,

McIntosh

,

T. K.

,

Gennarelli

,

T. A.

, and

Meaney

,

D. F.

, 1997, “

Characterization of Diffuse Axonal Pathology and Selective Hippocampal Damage Following Inertial Brain Trauma in the Pig

,”

J. Neuropathol. Exp. Neurol.

0022-3069,

56

(

7

), pp.

822

834

.

11.

Strich

,

S.

, 1961, “

Shearing of Nerve Fibers as a Cause of Brain Damage Due to Head Injury: A Pathological Study of Twenty Cases

,”

Lancet

0140-6736,

2

(

1

), pp.

443

448

.

12.

Povlishock

,

J. T.

, and

Katz

,

D. I.

, 2005, “

Update of Neuropathology and Neurological Recovery After Traumatic Brain Injury

,”

J. Head Trauma Rehabil.

0885-9701,

20

(

1

), pp.

76

94

.

13.

Povlishock

,

J. T.

,

Becker

,

D. P.

,

Cheng

,

C. L.

, and

Vaughan

,

G. W.

, 1983, “

Axonal Change in Minor Head Injury

,”

J. Neuropathol. Exp. Neurol.

0022-3069,

42

(

3

), pp.

225

242

.

14.

Reeves

,

T. M.

,

Phillips

,

L. L.

, and

Povlishock

,

J. T.

, 2005, “

Myelinated and Unmyelinated Axons of the Corpus Callosum Differ in Vulnerability and Functional Recovery Following Traumatic Brain Injury

,”

Exp. Neurol.

0014-4886,

196

(

1

), pp.

126

137

.

15.

Nakayama

,

N.

,

Okumura

,

A.

,

Shinoda

,

J.

,

Yasokawa

,

Y. T.

,

Miwa

,

K.

,

Yoshimura

,

S. I.

, and

Iwama

,

T.

, 2006, “

Evidence for White Matter Disruption in Traumatic Brain Injury Without Macroscopic Lesions

,”

J. Neurol., Neurosurg. Psychiatry

0022-3050,

77

(

7

), pp.

850

855

.

16.

Rugg-Gunn

,

F. J.

,

Symms

,

M. R.

,

Barker

,

G. J.

,

Greenwood

,

R.

, and

Duncan

,

J. S.

, 2001, “

Diffusion Imaging Shows Abnormalities After Blunt Head Trauma When Conventional Magnetic Resonance Imaging Is Normal

,”

J. Neurol., Neurosurg. Psychiatry

0022-3050,

70

(

4

), pp.

530

533

.

17.

Hertel

,

E.

,

Bell

,

R.

,

Elrick

,

M.

,

Farnsworth

,

A.

,

Kerley

,

G.

,

McGlaun

,

J.

,

Petney

,

S.

,

Silling

,

S.

, and

Taylor

,

P.

, 1993, “

CTH: A Software Family for Multi-Dimensional Shock Physics Analysis

,”

Proceedings of the 19th International Symposium on Shock Waves

, Vol.

1

, pp.

377

382

.

19.

Carter

,

D. R.

, 1985, “

Biomechanics of Bone

,”

Biomechanics of Trauma

,

Appleton-Century-Crofts

,

Norwalk, CT

, pp.

135

165

.

20.

Zhang

,

L.

,

Yang

,

K. H.

, and

King

,

A. I.

, 2001, “

Comparison of Brain Responses Between Frontal and Lateral Impacts by Finite Element Modeling

,”

J. Neurotrauma

0897-7151,

18

(

1

), pp.

21

30

.

21.

Shuck

,

L. Z.

, and

Advani

,

S. H.

, 1972, “

Rheological Response of Human Brain Tissue in Shear

,”

ASME J. Basic Eng.

0021-9223,

94

, pp.

905

911

.

22.

Ommaya

,

A. K.

, 1968, “

Mechanical Properties of Tissues of the Nervous System

,”

J. Biomech.

0021-9290,

1

, pp.

127

138

.

23.

Hertel

,

E.

, and

Kerley

,

G.

, 1998, “

CTH Reference Manual: The Equation of State Package

,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND98-0947.

24.

Nahum

,

A. M.

,

Smith

,

R.

, and

Ward

,

C. C.

, 1977, “

Intracranial Pressure Dynamics During Head Impact

,”

Proceedings of the 21st Stapp Car Crash Conference

,

Society of Automotive Engineers, Inc.

,

Warrendale, PA

, pp.

339

366

.

25.

Gruss

,

E.

, 2006, “

A Correction for Primary Blast Injury Criteria

,”

J. Trauma: Inj., Infect., Crit. Care

1079-6061,

60

(

6

), pp.

1284

1289

.

26.

Horgan

,

T.

, and

Gilchrist

,

M.

, 2004, “

Influence of FE Model Variability in Predicting Brain Motion and Intracranial Pressure Changes in Head Impact Simulations

,”

Int. J. Crashworthiness

1358-8265,

9

(

4

), pp.

401

418

.

27.

Nishimoto

,

T.

, and

Murakami

,

S.

, 2000, “

Direct Impact Simulations of Diffuse Axonal Injury by Axial Head Model

,”

JSAE Rev.

0389-4304,

21

(

1

), pp.

117

123

.

28.

Suh

,

C.

,

Kim

,

S.

, and

Hwang

,

B.

, 2005, “

Finite Element Analysis of Brain Damage Due to Impact Force With a Three Dimensional Head Model

,”

Advances in Fracture Strength

,

297–300

(

1

), pp.

1333

1338

. 0090-6964

29.

Willinger

,

R.

,

Kang

,

H. S.

, and

Diaw

,

B.

, 1999, “

Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts

,”

Ann. Biomed. Eng.

0090-6964,

27

(

3

), pp.

403

410

.

30.

Courant

,

R.

,

Friedrichs

,

K.

, and

Lewy

,

H.

, 1928, “

On the Partial Difference Equations of Mathematical Physics

,”

Mathematische Annalen

,

100

, pp.

32

74

.

31.

Lapidus

,

L.

, and

Pinder

,

G.

, 1982,

Numerical Solutions of Partial Differential Equations in Science and Engineering

,

Wiley

,

New York, NY

.

32.

Zhang

,

L.

,

Yang

,

K. H.

, and

King

,

A. I.

, 2004, “

A Proposed Injury Threshold for Mild Traumatic Brain Injury

,”

ASME J. Biomech. Eng.

0148-0731,

126

(

2

), pp.

226

236

.

33.

Viano

,

D. C.

,

Casson

,

I. R.

,

Pellman

,

E. J.

,

Bir

,

C. A.

,

Zhang

,

L.

,

Sherman

,

D. C.

, and

Boitano

,

M. A.

, 2005, “

Concussion in Professional Football: Comparison With Boxing Head Impacts–Part 10

,”

Neurosurgery

0148-396X,

57

(

6

), pp.

1154

1172

.

34.

Brennen

,

C. E.

, 2003, “

Cavitation in Biological and Bioengineering Contexts

,”

Fifth International Symposium on Cavitation, CAV2003

, Osaka, Japan, pp.

1

9

.

35.

Lubock

,

P.

, and

Goldsmith

,

W.

, 1980, “

Experimental Cavitation Studies in a Model Head-Neck System

,”

J. Biomech.

0021-9290,

13

, pp.

1041

1052

.

36.

King

,

A. I.

, 1993, “

Progress of Research on Impact Biomechanics

,”

ASME J. Biomech. Eng.

0148-0731,

115

, (4B), pp.

582

587

.

37.

King

,

A. I.

,

Ruan

,

J. S.

,

Zhou

,

C.

,

Hardy

,

W. N.

, and

Khalil

,

T. B.

, 1995, “

Recent Advances in Biomechanics of Brain Injury Research: A Review

,”

J. Neurotrauma

0897-7151,

12

(

4

), pp.

651

658

.

38.

Ruan

,

J. S.

,

Khalil

,

T.

, and

King

,

A. I.

, 1991, “

Human Head Dynamic Response to Side Impact by Finite Element Modeling

,”

ASME J. Biomech. Eng.

0148-0731,

113

(

3

), pp.

276

283

.

39.

Ruan

,

J. S.

,

Khalil

,

T.

, and

King

,

A. I.

, 1994, “

Dynamic Response of the Human Head to Impact by Three-Dimensional Finite Element Analysis

,”

ASME J. Biomech. Eng.

0148-0731,

116

(

1

), pp.

44

50

.

40.

Zhou

,

C.

,

Khalil

,

T.

, and

King

,

A. I.

, 1994, “

Shear Stress Distribution in the Porcine Brain Due to Rotational Impact

,”

Proceedings of the 38th Stapp Car Crash Conference

, Vol.

38

,

Society of Automotive Engineers, Inc.

,

Warrendale, PA

, pp.

133

143

.

41.

Zhou

,

C.

,

Khalil

,

T.

, and

King

,

A. I.

, 1995, “

A New Model Comparing Impact Response of the Homogeneous and Inhomogeneous Human Brain

,”

Proceedings of the 39th Stapp Car Crash Conference

, Vol.

39

,

Society of Automotive Engineers, Inc.

,

Warrendale, PA

, pp.

121

137

.

42.

Zong

,

Z.

,

Lee

,

H. P.

, and

Lu

,

C.

, 2006, “

A Three-Dimensional Human Head Finite Element Model and Power Flow in a Human Head Subject to Impact Loading

,”

J. Biomech.

0021-9290,

39

(

2

), pp.

284

292

.

44.

Kraus

,

M. F.

,

Susmaras

,

T.

,

Caughlin

,

B. P.

,

Walker

,

C. J.

,

Sweeney

,

J. A.

, and

Little

,

D. M.

, 2007, “

White Matter Integrity and Cognition in Chronic Traumatic Brain Injury: A Diffusion Tensor Imaging Study

,”

Brain

0006-8950,

130

(

10

), pp.

2508

2519

.

Copyright © 2009

by American Society of Mechanical Engineers

You do not currently have access to this content.

Sign In

Purchase this Content

619 Views

171 Web of Science

Get Email Alerts

Cited By

Introduction

Mechanical Blood Trauma in Circulatory-Assist Devices

Safety

Engineering the Everyday and the Extraordinary: Milestones in Innovation