Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor (original) (raw)

References

  1. Bruunsgaard, H., Skinhoj, P., Pedersen, A. N., Schroll, M., and Pedersen, B. K. (2000) Ageing, tumor necrosis factor-α (TNF-α) and atherosclerosis, Clin. Exp. Immunol., 121, 255–260.
    Article PubMed Central CAS PubMed Google Scholar
  2. Chung, H. Y., Sung, B., Jung, K. J., Zou, Y., and Yu, B. P. (2006) The molecular inflammatory process in aging, Antioxid. Redox Signal., 8, 572–581.
    Article CAS PubMed Google Scholar
  3. Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G., and Kaley, G. (2003) Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries, FASEB J., 17, 1183–1185.
    CAS PubMed Google Scholar
  4. Dandona, P., Aljada, A., and Bandyopadhyay, A. (2004) Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol., 25, 4–7.
    Article CAS PubMed Google Scholar
  5. Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm, Cell, 76, 301–314.
    Article CAS PubMed Google Scholar
  6. Roebuck, K. A., and Finnegan, A. (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression, J. Leukoc. Biol., 66, 876–888.
    CAS PubMed Google Scholar
  7. Park, J., Choi, H., Min, J. S., Park, S. J., Kim, J. H., Park, H. J., Kim, B., Chae, J. I., Yim, M., and Lee, D. S. (2013) Mitochondrial dynamics modulate the expression of proinflammatory mediators in microglial cells, J. Neurochem., 127, 221–232.
    Article CAS PubMed Google Scholar
  8. West, A. P., Shadel, G. S., and Ghosh, S. (2011) Mitochondria in innate immune responses, Nature Rev. Immunol., 11, 389–402.
    Article CAS Google Scholar
  9. Davidson, S. M., and Duchen, M. R. (2007) Endothelial mitochondria: contributing to vascular function and disease, Circ. Res., 100, 1128–1141.
    Article CAS PubMed Google Scholar
  10. Culic, O., Gruwel, M. L., and Schrader, J. (1997) Energy turnover of vascular endothelial cells, Am. J. Physiol., 273, 205–213.
    Google Scholar
  11. Addabbo, F., Ratliff, B., Park, H. C., Kuo, M. C., Ungvari, Z., Csiszar, A., Krasnikov, B., Sodhi, K., Zhang, F., Nasjletti, A., and Goligorsky, M. S. (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach, Am. J. Pathol., 174, 34–43.
    Article PubMed Central CAS PubMed Google Scholar
  12. Madamanchi, N. R., and Runge, M. S. (2007) Mitochondrial dysfunction in atherosclerosis, Circ. Res., 100, 460–473.
    Article CAS PubMed Google Scholar
  13. Schulz, E., Dopheide, J., Schuhmacher, S., Thomas, S. R., Chen, K., Daiber, A., Wenzel, P., Munzel, T., and Keaney, J. F., Jr. (2008) Suppression of the JNK pathway by induction of a metabolic stress response prevents vascular injury and dysfunction, Circulation, 118, 1347–1357.
    Article PubMed Central CAS PubMed Google Scholar
  14. Wrzosek, A., Lukasiak, A., Gwozdz, P., Malinska, D., Kozlovski, V. I., Szewczyk, A., Chlopicki, S., and Dolowy, K. (2009) Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function, Eur. J. Pharmacol., 602, 105–111.
    Article CAS PubMed Google Scholar
  15. Poburko, D., Lee, C. H., and van Breemen, C. (2004) Vascular smooth muscle mitochondria at the cross roads of Ca2+ regulation, Cell Calcium, 35, 509–521.
    Article CAS PubMed Google Scholar
  16. Joo, H. K., Lee, Y. R., Lim, S. Y., Lee, E. J., Choi, S., Cho, E. J., Park, M. S., Ryoo, S., Park, J. B., and Jeon, B. H. (2012) Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltagedependent anion channel-1, FEBS Lett., 586, 1349–1355.
    Article CAS PubMed Google Scholar
  17. Feletou, M., and Vanhoutte, P. M. (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture), Am. J. Physiol. Heart Circ. Physiol., 291, 985–1002.
    Article Google Scholar
  18. Galkin, I. I., Pletjushkina, O. Yu., Zinovkin, R. A., Zakharova, V. V., Biryukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent the tumor necrosis factor induced apoptosis of endothelial cells, Biochemistry (Moscow), 79, 124–130.
    Article CAS Google Scholar
  19. Rahman, A., Kefer, J., Bando, M., Niles, W. D., and Malik, A. B. (1998) E-selectin expression in human endothelial cells by TNF-α-induced oxidant generation and NF-κB activation, Am. J. Physiol., 275, L533–544.
    CAS PubMed Google Scholar
  20. Deshpande, S. S., Angkeow, P., Huang, J., Ozaki, M., and Irani, K. (2000) Rac1 inhibits TNF-α-induced endothelial cell apoptosis: dual regulation by reactive oxygen species, FASEB J., 14, 1705–1714.
    Article CAS PubMed Google Scholar
  21. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging (Albany N. Y.), 6, 671–674.
    Google Scholar
  22. Brigelius-Flohe, R., and Flohe, L. (2011) Basic principles and emerging concepts in the redox control of transcription factors, Antioxid. Redox Signal., 15, 2335–2381.
    Article PubMed Central CAS PubMed Google Scholar
  23. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.
    Article CAS PubMed Google Scholar
  24. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.
    Article PubMed Central CAS PubMed Google Scholar
  25. Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.
    Article CAS PubMed Google Scholar
  26. Duval, C., Negre-Salvayre, A., Dogilo, A., Salvayre, R., Penicaud, L., and Casteilla, L. (2002) Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells, Biochem. Cell Biol., 80, 757–764.
    Article CAS PubMed Google Scholar
  27. Fink, B. D., Reszka, K. J., Herlein, J. A., Mathahs, M. M., and Sivitz, W. I. (2005) Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria, Am. J. Physiol. Endocrinol. Metab., 288, 71–79.
    Article Google Scholar
  28. Lee, K. U., Lee, I. K., Han, J., Song, D. K., Kim, Y. M., Song, H. S., Kim, H. S., Lee, W. J., Koh, E. H., Song, K. H., Han, S. M., Kim, M. S., Park, I. S., and Park, J. Y. (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis, Circ. Res., 96, 1200–1207.
    Article CAS PubMed Google Scholar
  29. Park, J. Y., Park, K. G., Kim, H. J., Kang, H. G., Ahn, J. D., Kim, H. S., Kim, Y. M., Son, S. M., Kim, I. J., Kim, Y. K., Kim, C. D., Lee, K. U., and Lee, I. K. (2005) The effects of the overexpression of recombinant uncoupling protein 2 on proliferation, migration and plasminogen activator inhibitor 1 expression in human vascular smooth muscle cells, Diabetologia, 48, 1022–1028.
    Article CAS PubMed Google Scholar
  30. Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K., and Csiszar, A. (2007) Increased mitochondrial H2O2 production promotes endothelial NF-κB activation in aged rat arteries, Am. J. Physiol. Heart Circ. Physiol., 293, 37–47.
    Article Google Scholar
  31. Barbour, J. A., and Turner, N. (2014) Mitochondrial stress signaling promotes cellular adaptations, Int. J. Cell Biol., 2014, 156020.
    Article PubMed Central PubMed Google Scholar
  32. Tilstra, J. S., Clauson, C. L., Niedernhofer, L. J., and Robbins, P. D. (2011) NF-κB in aging and disease, Aging Dis., 2, 449–465.
    PubMed Central PubMed Google Scholar
  33. Popova, E. N., Pletjushkina, O. Y., Dugina, V. B., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Skulachev, V. P., and Chernyak, B. V. (2010) Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation, Antioxid. Redox Signal., 13, 1297–1307.
    Article CAS PubMed Google Scholar
  34. Izyumov, D. S., Domnina, L. V., Nepryakhina, O. K., Avetisyan, A. V., Golyshev, S. A., Ivanova, O. Yu., Korotetskaya, M. V., Lyamzayev, K. G., Pletjushkina, O. Yu., Popova, E. N., and Chernyak, B. V. (2010) Mitochondria as sources of reactive oxygen species during oxidative stress. The study with novel mitochondria-targeted antioxidants on the basis of “Skulachev ions”, Biochemistry (Moscow), 75, 123–129.
    Article CAS Google Scholar
  35. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Yu., Fetisova, E. K., Ivanova, O. Yu., Kalinina, N. I., Lichinitser, M. R., Lukashev, A. N., Khromova, N. V., Kopnin, B. P., Korotetskaya, M. V., Pletjushkina, O. Yu., Popova, E. N., Shagieva, G. S., Skulachev, M. V., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasilyev, Yu. M., and Skulachev, V. P. (2008) Mitochondriatargeted plastoquinone derivative as a tool interrupting the aging program. 3. SkQ1 suppresses tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316.
    Article CAS Google Scholar
  36. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552–560.
    Article CAS PubMed Google Scholar
  37. Cerqueira, F. M., Laurindo, F. R., and Kowaltowski, A. J. (2011) Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis, PLoS One, 6, e18433.
    Article PubMed Central CAS PubMed Google Scholar
  38. Lyamzaev, K. G., Izyumov, D. S., Avetisyan, A. V., Yang, F., Pletjushkina, O. Y., and Chernyak, B. V. (2004) Inhibition of mitochondrial bioenergetics: the effects on structure of mitochondria in the cell and on apoptosis, Acta Biochim. Pol., 51, 553–562.
    CAS PubMed Google Scholar
  39. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518–524.
    Article CAS PubMed Google Scholar
  40. Bradley, J. R. (2008) TNF-mediated inflammatory disease, J. Pathol., 214, 149–160.
    Article CAS PubMed Google Scholar
  41. Hirata, Y., Nagata, D., Suzuki, E., Nishimatsu, H., Suzuki, J.-I., and Nagai, R. (2010) Diagnosis and treatment of endothelial dysfunction in cardiovascular disease, Int. Heart J., 51, 1–6.
    Article CAS PubMed Google Scholar
  42. Plotnikov, E. Yu., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chuprykina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Yu. N., Skulachev, V. P., and Zorov, D. B. (2012) Partial uncoupling of respiration and phosphorylation as one of the pathways of implementation of the nephro- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.
    Article CAS Google Scholar

Download references