Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia (original) (raw)

References

  1. Blowes, D.W., Ptacek, C.J., and Weisener, C.G., The Geochemistry of Acid Mine Drainage, Treatise on Geochemistry, 2003, vol. 9, pp. 149–204.
    Article Google Scholar
  2. Johnson, B., Biological Removal of Sulfurous Compounds from Inorganic Wastewaters, in Environmental technologies to Treat Sulfur Pollution: Principles and Engineering, Lens, P.N.L. and Hulshoff, L., Eds., London: IWA Publishing, 2000, pp. 175–205.
    Google Scholar
  3. Gerashchenko, A.A., Analysis of the Mineral Source Base of Gold in the Kemerovo District, in Zoloto Kuzbassa (Gold of the Kuznetsk Basin), Kemerovo: Kemerovskii poligrafkombinat, 2000, pp. 69–213.
    Google Scholar
  4. Widdel, F.F and Bak, R., Gram-Negative Mesophilic Sulfate-Reducing Bacteria, in The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Balows, A., et al., Eds., Berlin: Springer-Verlag, 1992, vol. 4, pp. 3352–3378.
    Google Scholar
  5. Muyzer, G., Hottenträger, S., Teske, A., and Wawer, C., Denaturing Gradient Gel Electrophoresis of PCRAmplified 16S rDNA-a New Molecular Approach to Analyze the Genetic Diversity of Mixed Microbial Communities, in Molecular Microbial Ecology Manual, Akkermans, A.D.L., et al., Eds., Dordrecht: Kluwer Academic Publishers, 1996, pp. 1–23.
    Google Scholar
  6. DeLong, E.F., Archaea in Costal Marine Environments, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 5685–5689.
    Article PubMed CAS Google Scholar
  7. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 173, pp. 697–703.
    PubMed CAS Google Scholar
  8. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.
    Article PubMed CAS Google Scholar
  9. Hamamura, N., Olson, S.H., Ward, D.M., and Inskeep, W.P., Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park, Appl. Environ. Microbiol., 2005, vol. 71, pp. 5943–5950.
    Article PubMed CAS Google Scholar
  10. Garcia-Moyano, A., González-Toril, E., Aguilera, A., and Amils, R., Prokaryotic Community Composition and Ecology of Floating Macroscopic Filaments from an Extreme Acidic Environment, Rio Tinto (SW, Spain), Syst. Appl. Microbiol, 2007, vol. 30, pp. 601–614.
    Article PubMed CAS Google Scholar
  11. Labrenz, M. and Banfield, J.F., Sulfate-Reducing Bacteria-Dominated Biofilms That Precipitate ZnS in a Subsurface Circumneutral-pH Mine Drainage System, Microbial Ecol., 2004, vol. 47, pp. 205–217.
    CAS Google Scholar
  12. Dopson, M. and Lindström, E.B., Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching, Appl. Environ. Microbiol., 1999, vol. 65, pp. 36–40.
    PubMed CAS Google Scholar
  13. Stahl, D.A., Fishbain, S., Klein, M., Baker, B.J., and Wagner, M., Origins and Diversification of Sulfate-Respiring Microorganisms, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 189–195.
    Article PubMed CAS Google Scholar
  14. Karnachuk, O.V., Pimenov, N.V., Yusupov, S.K., Frank, Y.A., Kaksonen, A.H., Puhakka, J.A., Ivanov, M.V., Lindström, E.B., and Tuovinen, O.H., Sulfate Reduction Potential in Sediments in the Norilsk Mining Area, Northern Siberia, Geomicrobiol. J., 2005, vol. 22, pp. 11–25.
    Article CAS Google Scholar
  15. Johnson, B.D. and Hallberg, K.B., The Microbiology of Acidic Mine Waters, Res. Microbiol, 2003, vol. 154, pp. 466–473.
    Article PubMed CAS Google Scholar
  16. Nevin, K.P., Finneran, K.T., and Lovley, D.R., Microorganisms Associated with Uranium Bioremediation in a High-Salinity Subsurface Sediment, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3672–3675.
    Article PubMed CAS Google Scholar
  17. Petrie, L., North, N.N., Dollhopf, S.L., Balkwill, D.L., and Kostka, J.E., Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI), Appl. Environ. Microbiol., 2003, vol. 69, pp. 7467–7479.
    Article PubMed CAS Google Scholar
  18. Saunders, J.A., Lee, M.-K., Wolf, L.W., Morton, C.M., Feng, Y., Thomson, I., and Park, S., Geochemical, Microbiological, and Geophysical Assessments of Anaerobic Immobilization of Heavy Metals, Bioremediation J, 2005, vol. 9, pp. 33–48.
    Article CAS Google Scholar
  19. Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., and Morel, F.M.M., Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov, Arch. Microbiol., 1997, vol. 168, pp. 380–388.
    Article PubMed CAS Google Scholar
  20. Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Kolganova, T.V., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Thermincola carboxydiphila gen. nov., sp. nov., a Novel Anaerobic, Carboxydotrophic, Hydrogenogenic Bacterium from a Hot Spring of the Lake Baikal Area, Int. J. Syst. Evol. Microbiol, 2005, vol. 55, pp. 2069–2073.
    Article PubMed CAS Google Scholar
  21. Zavarzina, D.G., Sokolova, T.G., Tourova, T.P., Chernyh, N.A., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Thermincola ferriacetica sp. nov., a New Anaerobic, Thermophilic, Facultatively Chemolithoautotrophic Bacterium Capable of Dissimilatory Fe(III) Reduction, Extremophiles, 2007, vol. 11, pp. 1–7.
    Article PubMed CAS Google Scholar
  22. Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H., Anaerobic Respiration Using Fe(3+), S(0), and H(2) in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans, J. Bacteriol., 2002, vol. 184, pp. 2081–2087.
    Article PubMed CAS Google Scholar

Download references