Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia (original) (raw)
References
Blowes, D.W., Ptacek, C.J., and Weisener, C.G., The Geochemistry of Acid Mine Drainage, Treatise on Geochemistry, 2003, vol. 9, pp. 149–204. Article Google Scholar
Johnson, B., Biological Removal of Sulfurous Compounds from Inorganic Wastewaters, in Environmental technologies to Treat Sulfur Pollution: Principles and Engineering, Lens, P.N.L. and Hulshoff, L., Eds., London: IWA Publishing, 2000, pp. 175–205. Google Scholar
Gerashchenko, A.A., Analysis of the Mineral Source Base of Gold in the Kemerovo District, in Zoloto Kuzbassa (Gold of the Kuznetsk Basin), Kemerovo: Kemerovskii poligrafkombinat, 2000, pp. 69–213. Google Scholar
Widdel, F.F and Bak, R., Gram-Negative Mesophilic Sulfate-Reducing Bacteria, in The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Balows, A., et al., Eds., Berlin: Springer-Verlag, 1992, vol. 4, pp. 3352–3378. Google Scholar
Muyzer, G., Hottenträger, S., Teske, A., and Wawer, C., Denaturing Gradient Gel Electrophoresis of PCRAmplified 16S rDNA-a New Molecular Approach to Analyze the Genetic Diversity of Mixed Microbial Communities, in Molecular Microbial Ecology Manual, Akkermans, A.D.L., et al., Eds., Dordrecht: Kluwer Academic Publishers, 1996, pp. 1–23. Google Scholar
DeLong, E.F., Archaea in Costal Marine Environments, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 5685–5689. ArticlePubMedCAS Google Scholar
Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 173, pp. 697–703. PubMedCAS Google Scholar
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402. ArticlePubMedCAS Google Scholar
Hamamura, N., Olson, S.H., Ward, D.M., and Inskeep, W.P., Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park, Appl. Environ. Microbiol., 2005, vol. 71, pp. 5943–5950. ArticlePubMedCAS Google Scholar
Garcia-Moyano, A., González-Toril, E., Aguilera, A., and Amils, R., Prokaryotic Community Composition and Ecology of Floating Macroscopic Filaments from an Extreme Acidic Environment, Rio Tinto (SW, Spain), Syst. Appl. Microbiol, 2007, vol. 30, pp. 601–614. ArticlePubMedCAS Google Scholar
Labrenz, M. and Banfield, J.F., Sulfate-Reducing Bacteria-Dominated Biofilms That Precipitate ZnS in a Subsurface Circumneutral-pH Mine Drainage System, Microbial Ecol., 2004, vol. 47, pp. 205–217. CAS Google Scholar
Dopson, M. and Lindström, E.B., Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching, Appl. Environ. Microbiol., 1999, vol. 65, pp. 36–40. PubMedCAS Google Scholar
Stahl, D.A., Fishbain, S., Klein, M., Baker, B.J., and Wagner, M., Origins and Diversification of Sulfate-Respiring Microorganisms, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 189–195. ArticlePubMedCAS Google Scholar
Karnachuk, O.V., Pimenov, N.V., Yusupov, S.K., Frank, Y.A., Kaksonen, A.H., Puhakka, J.A., Ivanov, M.V., Lindström, E.B., and Tuovinen, O.H., Sulfate Reduction Potential in Sediments in the Norilsk Mining Area, Northern Siberia, Geomicrobiol. J., 2005, vol. 22, pp. 11–25. ArticleCAS Google Scholar
Johnson, B.D. and Hallberg, K.B., The Microbiology of Acidic Mine Waters, Res. Microbiol, 2003, vol. 154, pp. 466–473. ArticlePubMedCAS Google Scholar
Nevin, K.P., Finneran, K.T., and Lovley, D.R., Microorganisms Associated with Uranium Bioremediation in a High-Salinity Subsurface Sediment, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3672–3675. ArticlePubMedCAS Google Scholar
Petrie, L., North, N.N., Dollhopf, S.L., Balkwill, D.L., and Kostka, J.E., Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI), Appl. Environ. Microbiol., 2003, vol. 69, pp. 7467–7479. ArticlePubMedCAS Google Scholar
Saunders, J.A., Lee, M.-K., Wolf, L.W., Morton, C.M., Feng, Y., Thomson, I., and Park, S., Geochemical, Microbiological, and Geophysical Assessments of Anaerobic Immobilization of Heavy Metals, Bioremediation J, 2005, vol. 9, pp. 33–48. ArticleCAS Google Scholar
Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., and Morel, F.M.M., Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov, Arch. Microbiol., 1997, vol. 168, pp. 380–388. ArticlePubMedCAS Google Scholar
Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Kolganova, T.V., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Thermincola carboxydiphila gen. nov., sp. nov., a Novel Anaerobic, Carboxydotrophic, Hydrogenogenic Bacterium from a Hot Spring of the Lake Baikal Area, Int. J. Syst. Evol. Microbiol, 2005, vol. 55, pp. 2069–2073. ArticlePubMedCAS Google Scholar
Zavarzina, D.G., Sokolova, T.G., Tourova, T.P., Chernyh, N.A., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Thermincola ferriacetica sp. nov., a New Anaerobic, Thermophilic, Facultatively Chemolithoautotrophic Bacterium Capable of Dissimilatory Fe(III) Reduction, Extremophiles, 2007, vol. 11, pp. 1–7. ArticlePubMedCAS Google Scholar
Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H., Anaerobic Respiration Using Fe(3+), S(0), and H(2) in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans, J. Bacteriol., 2002, vol. 184, pp. 2081–2087. ArticlePubMedCAS Google Scholar