Small heat shock proteins and adaptation of various Drosophila species to hyperthermia (original) (raw)
Abstract
The dynamics and the level of accumulation of small heat shock proteins (sHSP group 21–27) after a heat exposure were studied in three Drosophila species differing in thermotolerance. The southern species Drosophila virilis, having the highest thermotolerance, surpassed thermosensitive D. lummei and D. melanogaster in the level of sHSPs throughout the temperature range tested. The results suggest an important role of sHSPs in the molecular mechanisms of adaptation to adverse environmental conditions, particularly to hyperthermia.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Hunt C., Morimoto R.I. 1985. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc. Natl. Acad. Sci. USA. 82, 6455–6459.
PubMed CAS Google Scholar - Margulis B.A., Guzhova I.V. 2000. Stress proteins in eukaryotic cells. Tsitologiya. 42, 323–342.
CAS Google Scholar - Ul’masov Kh.A., Karryeva B.Ch., Karaev K. 1993. Stressovye belki i adaptatsiya (Stress Proteins and Adaptation). Ashkhabad: Ylym.
Google Scholar - Haslbeck M., Walke S., Stormer T., Ernsperger M., White H.E., Chen S., Saibil H.R., Buchner J. 1999. HSP27: A temperature-regulated chaperone. EMBO J. 18, 6744–6751.
Article PubMed CAS Google Scholar - Kelley W.L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23, 222–227.
Article PubMed CAS Google Scholar - Krebs R.A. 1999. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Cell Stress Chaperones. 4, 243–249.
Article PubMed CAS Google Scholar - Zatsepina O.G., Velikodvorskaia V.V., Molodtsov V.B., Garbuz D.G., Lerman D.N., Bettencourt B.R., Feder M.E., Evgenev M.B. 2001. A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J. Exp. Biol. 204, 1869–1881.
PubMed CAS Google Scholar - Garbuz D.G., Moloftsov V.B., Velikodvorskaia V.V., Zatsepina O.G., Evgenev M.B. 2002. Evolution of response to heat shock within the genus Drosophila. Genetika. 38, 1097–1109.
PubMed CAS Google Scholar - Garbuz D.G., Zatsepina O.G., Feder M.E., Evgen’ev M.B. 2003. Evolution of termotolerance and the heat-shock response: evidence from inter/intraspecific comparison and interspecific hybridization in the Drosophila virilis species group: 1. Thermal phenotype. J. Exp. Biol. 206, 2399–2408.
Article PubMed CAS Google Scholar - Mosser D.D., Caron A.W., Bourged L., Denis-Larose C., Massie B. 1997. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17, 5317–5327.
PubMed CAS Google Scholar - Evgenev M.B., Zatsepina O.G., Garbuz D.G., Lerman D.N., Velikodvorskaia V.V., Zelentsova E.S., Feder M.E. 2004. Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma. 113, 223–232.
CAS Google Scholar - Chen Q., Ma E., Behar K.L., Xu T., Haddad G.G. 2002. Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. J. Biol. Chem. 277, 3274–3279.
PubMed CAS Google Scholar - Ayme A., Tissieres A. 1985. Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J. 4, 2949–2954.
PubMed CAS Google Scholar - Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.
Article PubMed CAS Google Scholar - O’Farrell P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.
PubMed CAS Google Scholar - Krebs R.A., Feder M.E. 1997. Deleterious consequences of HSP70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones. 2, 60–71.
Article PubMed CAS Google Scholar - Feder M.E., Hofmann G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.
Article PubMed CAS Google Scholar - Evgenev M.B., Sheinker V.Sh., Levin A.V. 1987. Molecular mechanisms of adaptation to hyperthermia in higher organisms: 1. Heat shock protein synthesis in cultured cells and larvae of different silkworm species. Mol. Biol. 21, 484–494.
CAS Google Scholar - Mehlen P., Schulze-Osthoff K., Arrigo A.P. 1996. Small stress proteins as novel regulators of apoptosis. J. Biol. Chem. 271, 16510–16514.
PubMed CAS Google Scholar
Author information
Authors and Affiliations
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
V. Yu. Shilova, D. G. Garbuz, M. B. Evgen’ev & O. G. Zatsepina - Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia
M. B. Evgen’ev
Authors
- V. Yu. Shilova
You can also search for this author inPubMed Google Scholar - D. G. Garbuz
You can also search for this author inPubMed Google Scholar - M. B. Evgen’ev
You can also search for this author inPubMed Google Scholar - O. G. Zatsepina
You can also search for this author inPubMed Google Scholar
Additional information
Original Russian Text © V.Yu. Shilova, D.G. Garbuz, M.B. Evgen’ev, O.G. Zatsepina, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 271–276.
Rights and permissions
About this article
Cite this article
Shilova, V.Y., Garbuz, D.G., Evgen’ev, M.B. et al. Small heat shock proteins and adaptation of various Drosophila species to hyperthermia.Mol Biol 40, 235–239 (2006). https://doi.org/10.1134/S0026893306020087
- Received: 16 June 2005
- Issue Date: March 2006
- DOI: https://doi.org/10.1134/S0026893306020087