Ergodic properties of visible lattice points (original) (raw)
References
E. Akin, The General Topology of Dynamical Systems (Am. Math. Soc., Providence, RI, 1993). MATH Google Scholar
T. M. Apostol, Introduction to Analytic Number Theory (Springer, New York, 1976). MATH Google Scholar
M. Baake and U. Grimm, Aperiodic Order, Vol. 1: A Mathematical Invitation (Cambridge Univ. Press, Cambridge, 2013). Google Scholar
M. Baake, U. Grimm, and D. H. Warrington, “Some remarks on the visible points of a lattice,” J. Phys. A: Math. Gen. 27, 2669–2674, 5041 (1994). ArticleMathSciNet Google Scholar
M. Baake and D. Lenz, “Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra,” Ergodic Theory Dyn. Syst. 24, 1867–1893 (2004); arXiv:math/0302061 [math.DS]. ArticleMATHMathSciNet Google Scholar
M. Baake, D. Lenz, and R. V. Moody, “Characterization of model sets by dynamical systems,” Ergodic Theory Dyn. Syst. 27, 341–382 (2007); arXiv:math/0511648 [math.DS]. ArticleMATHMathSciNet Google Scholar
M. Baake, D. Lenz, and C. Richard, “Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies,” Lett. Math. Phys. 82, 61–77 (2007); arXiv: 0706.1677 [math.DS]. ArticleMATHMathSciNet Google Scholar
M. Baake, D. Lenz, and A. van Enter, “Dynamical versus diffraction spectrum for structures with finite local complexity,” Ergodic Theory Dyn. Syst., 10.1017/etds.2014.28 (2014); arXiv: 1307.7518 [math.DS]. Google Scholar
M. Baake and R. V. Moody, “Similarity submodules and root systems in four dimensions,” Can. J. Math. 51, 1258–1276 (1999); arXiv:math/9904028 [math.MG]. ArticleMATHMathSciNet Google Scholar
_M. Baake, R. V. Moody, and P. A. B. Pleasants, “Diffraction from visible lattice points and kth power free integers,” Discrete Math. 221, 3–42 (2000); arXiv:math/9906132 [math.MG]. ArticleMATHMathSciNet Google Scholar
C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups (Springer, Berlin, 1975). BookMATH Google Scholar
Z. I. Borevich and I. R. Shafarevich, Number Theory (Academic, New York, 1966). Google Scholar
F. Cellarosi and Ya. G. Sinai, “Ergodic properties of square-free numbers,” J. Eur. Math. Soc. 15, 1343–1374 (2013); arXiv: 1112.4691 [math.DS]. ArticleMATHMathSciNet Google Scholar
F. Cellarosi and I. Vinogradov, “Ergodic properties of k-free integers in number fields,” J. Mod. Dyn. 7, 461–488 (2013); arXiv: 1304.0214 [math.DS]. ArticleMATHMathSciNet Google Scholar
L. Danzer and N. Dolbilin, “Delone graphs; some species and local rules,” in The Mathematics of Long-Range Aperiodic Order, Ed. by R. V. Moody (Kluwer, Dordrecht, 1997), NATO Adv. Stud. Inst. C: Math. Phys. Sci. 489, pp. 85–114. Chapter Google Scholar
M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces (Springer, Berlin, 1976), Lect. Notes Math. 527. MATH Google Scholar
N. P. Dolbilin, “Boris Nikolaevich Delone (Delaunay): Life and work,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 275, 7–21 (2011) [Proc. Steklov Inst. Math. 275, 1–14 (2011)]. MathSciNet Google Scholar
E. H. El Abdalaoui, M. Lemañczyk, and T. de la Rue, “A dynamical point of view on the set of B-free integers,” Int. Math. Res. Not., 10.1093/imrn/rnu164 (2014); arXiv: 1311.3752 [math.DS]. Google Scholar
H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,” Math. Syst. Theory 1, 1–49 (1967). ArticleMATHMathSciNet Google Scholar
E. Glasner, Ergodic Theory via Joinings (Am. Math. Soc., Providence, RI, 2003). BookMATH Google Scholar
P. R. Halmos and J. von Neumann, “Operator methods in classical mechanics. II,” Ann. Math., Ser. 2, 43, 332–350 (1942). ArticleMATH Google Scholar
F. Herzog and B. M. Stewart, “Patterns of visible and nonvisible lattice points,” Am. Math. Mon. 78, 487–496, 870 (1971). ArticleMATHMathSciNet Google Scholar
L. K. Hua, Introduction to Number Theory (Springer, Berlin, 1982). MATH Google Scholar
C. Huck and M. Baake, “Dynamical properties of k-free lattice points,” Acta Phys. Pol. A 126, 482–485 (2014); arXiv: 1402.2202 [math.DS]. Article Google Scholar
J. Ku-laga-Przymus, M. Lemañczyk, and B. Weiss, “On invariant measures for ℬ-free systems,” arXiv: 1406.3745 [math.DS].
L. Mirsky, “Arithmetical pattern problems relating to divisibility by rth powers,” Proc. London Math. Soc., Ser. 2, 50, 497–508 (1949). ArticleMATHMathSciNet Google Scholar
P. A. B. Pleasants and C. Huck, “Entropy and diffraction of the k-free points in n-dimensional lattices,” Discrete Comput. Geom. 50, 39–68 (2013); arXiv: 1112.1629 [math.MG]. ArticleMATHMathSciNet Google Scholar
W. Rudin, Fourier Analysis on Groups (Interscience, New York, 1962). MATH Google Scholar
M. R. Schroeder, “A simple function and its Fourier transform,” Math. Intell. 4, 158–161 (1982). ArticleMathSciNet Google Scholar
M. R. Schroeder, Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-similarity, 3rd ed. (Springer, Berlin, 1997). BookMATH Google Scholar
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53 (20), 1951–1954 (1984). Article Google Scholar
B. Solomyak, “Dynamics of self-similar tilings,” Ergodic Theory Dyn. Syst. 17, 695–738 (1997); 19, 1685 (1999). ArticleMATHMathSciNet Google Scholar
W. Steurer, “Twenty years of structure research on quasicrystals. I: Pentagonal, octagonal, decagonal and dodecagonal quasicrystals,” Z. Kristallogr. 219, 391–446 (2004). ArticleMATHMathSciNet Google Scholar
J. von Neumann, “Zur Operatorenmethode in der klassischen Mechanik,” Ann. Math., Ser. 2, 33, 587–642 (1932). Article Google Scholar
P. Walters, An Introduction to Ergodic Theory (Springer, New York, 2000). MATH Google Scholar
B. Weiss, Single Orbit Dynamics (Am. Math. Soc., Providence, RI, 2000). MATH Google Scholar