Ergodic properties of visible lattice points (original) (raw)

References

  1. E. Akin, The General Topology of Dynamical Systems (Am. Math. Soc., Providence, RI, 1993).
    MATH Google Scholar
  2. T. M. Apostol, Introduction to Analytic Number Theory (Springer, New York, 1976).
    MATH Google Scholar
  3. M. Baake and U. Grimm, Aperiodic Order, Vol. 1: A Mathematical Invitation (Cambridge Univ. Press, Cambridge, 2013).
    Google Scholar
  4. M. Baake, U. Grimm, and D. H. Warrington, “Some remarks on the visible points of a lattice,” J. Phys. A: Math. Gen. 27, 2669–2674, 5041 (1994).
    Article MathSciNet Google Scholar
  5. M. Baake and D. Lenz, “Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra,” Ergodic Theory Dyn. Syst. 24, 1867–1893 (2004); arXiv:math/0302061 [math.DS].
    Article MATH MathSciNet Google Scholar
  6. M. Baake, D. Lenz, and R. V. Moody, “Characterization of model sets by dynamical systems,” Ergodic Theory Dyn. Syst. 27, 341–382 (2007); arXiv:math/0511648 [math.DS].
    Article MATH MathSciNet Google Scholar
  7. M. Baake, D. Lenz, and C. Richard, “Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies,” Lett. Math. Phys. 82, 61–77 (2007); arXiv: 0706.1677 [math.DS].
    Article MATH MathSciNet Google Scholar
  8. M. Baake, D. Lenz, and A. van Enter, “Dynamical versus diffraction spectrum for structures with finite local complexity,” Ergodic Theory Dyn. Syst., 10.1017/etds.2014.28 (2014); arXiv: 1307.7518 [math.DS].
    Google Scholar
  9. M. Baake and R. V. Moody, “Similarity submodules and root systems in four dimensions,” Can. J. Math. 51, 1258–1276 (1999); arXiv:math/9904028 [math.MG].
    Article MATH MathSciNet Google Scholar
  10. _M. Baake, R. V. Moody, and P. A. B. Pleasants, “Diffraction from visible lattice points and kth power free integers,” Discrete Math. 221, 3–42 (2000); arXiv:math/9906132 [math.MG].
    Article MATH MathSciNet Google Scholar
  11. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups (Springer, Berlin, 1975).
    Book MATH Google Scholar
  12. Z. I. Borevich and I. R. Shafarevich, Number Theory (Academic, New York, 1966).
    Google Scholar
  13. F. Cellarosi and Ya. G. Sinai, “Ergodic properties of square-free numbers,” J. Eur. Math. Soc. 15, 1343–1374 (2013); arXiv: 1112.4691 [math.DS].
    Article MATH MathSciNet Google Scholar
  14. F. Cellarosi and I. Vinogradov, “Ergodic properties of k-free integers in number fields,” J. Mod. Dyn. 7, 461–488 (2013); arXiv: 1304.0214 [math.DS].
    Article MATH MathSciNet Google Scholar
  15. L. Danzer and N. Dolbilin, “Delone graphs; some species and local rules,” in The Mathematics of Long-Range Aperiodic Order, Ed. by R. V. Moody (Kluwer, Dordrecht, 1997), NATO Adv. Stud. Inst. C: Math. Phys. Sci. 489, pp. 85–114.
    Chapter Google Scholar
  16. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces (Springer, Berlin, 1976), Lect. Notes Math. 527.
    MATH Google Scholar
  17. N. P. Dolbilin, “Boris Nikolaevich Delone (Delaunay): Life and work,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 275, 7–21 (2011) [Proc. Steklov Inst. Math. 275, 1–14 (2011)].
    MathSciNet Google Scholar
  18. E. H. El Abdalaoui, M. Lemañczyk, and T. de la Rue, “A dynamical point of view on the set of B-free integers,” Int. Math. Res. Not., 10.1093/imrn/rnu164 (2014); arXiv: 1311.3752 [math.DS].
    Google Scholar
  19. H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,” Math. Syst. Theory 1, 1–49 (1967).
    Article MATH MathSciNet Google Scholar
  20. E. Glasner, Ergodic Theory via Joinings (Am. Math. Soc., Providence, RI, 2003).
    Book MATH Google Scholar
  21. P. R. Halmos and J. von Neumann, “Operator methods in classical mechanics. II,” Ann. Math., Ser. 2, 43, 332–350 (1942).
    Article MATH Google Scholar
  22. F. Herzog and B. M. Stewart, “Patterns of visible and nonvisible lattice points,” Am. Math. Mon. 78, 487–496, 870 (1971).
    Article MATH MathSciNet Google Scholar
  23. L. K. Hua, Introduction to Number Theory (Springer, Berlin, 1982).
    MATH Google Scholar
  24. C. Huck and M. Baake, “Dynamical properties of k-free lattice points,” Acta Phys. Pol. A 126, 482–485 (2014); arXiv: 1402.2202 [math.DS].
    Article Google Scholar
  25. J. Ku-laga-Przymus, M. Lemañczyk, and B. Weiss, “On invariant measures for ℬ-free systems,” arXiv: 1406.3745 [math.DS].
  26. L. Mirsky, “Note on an asymptotic formula connected with r-free integers,” Q. J. Math. 18, 178–182 (1947).
    Article MATH MathSciNet Google Scholar
  27. L. Mirsky, “Arithmetical pattern problems relating to divisibility by rth powers,” Proc. London Math. Soc., Ser. 2, 50, 497–508 (1949).
    Article MATH MathSciNet Google Scholar
  28. R. V. Moody, “Uniform distribution in model sets,” Can. Math. Bull. 45 (1), 123–130 (2002).
    Article MATH MathSciNet Google Scholar
  29. R. Mosseri, “Visible points in a lattice,” J. Phys. A: Math. Gen. 25, L25–L29 (1992).
    Article MATH MathSciNet Google Scholar
  30. J. Neukirch, Algebraic Number Theory (Springer, Berlin, 1999).
    Book MATH Google Scholar
  31. P. A. B. Pleasants and C. Huck, “Entropy and diffraction of the k-free points in n-dimensional lattices,” Discrete Comput. Geom. 50, 39–68 (2013); arXiv: 1112.1629 [math.MG].
    Article MATH MathSciNet Google Scholar
  32. W. Rudin, Fourier Analysis on Groups (Interscience, New York, 1962).
    MATH Google Scholar
  33. P. Sarnak, “Three lectures on the Möbius function randomness and dynamics. Lecture 1,” Preprint (Inst. Adv. Stud., Princeton, NJ, 2010), http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf
    Google Scholar
  34. M. R. Schroeder, “A simple function and its Fourier transform,” Math. Intell. 4, 158–161 (1982).
    Article MathSciNet Google Scholar
  35. M. R. Schroeder, Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-similarity, 3rd ed. (Springer, Berlin, 1997).
    Book MATH Google Scholar
  36. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53 (20), 1951–1954 (1984).
    Article Google Scholar
  37. B. Sing, “Pisot substitutions and beyond,” PhD thesis (Univ. Bielefeld, Bielefeld, 2006); http://bieson.ub.uni-bielefeld.de/volltexte/2007/1155/
    MATH Google Scholar
  38. B. Solomyak, “Dynamics of self-similar tilings,” Ergodic Theory Dyn. Syst. 17, 695–738 (1997); 19, 1685 (1999).
    Article MATH MathSciNet Google Scholar
  39. W. Steurer, “Twenty years of structure research on quasicrystals. I: Pentagonal, octagonal, decagonal and dodecagonal quasicrystals,” Z. Kristallogr. 219, 391–446 (2004).
    Article MATH MathSciNet Google Scholar
  40. J. von Neumann, “Zur Operatorenmethode in der klassischen Mechanik,” Ann. Math., Ser. 2, 33, 587–642 (1932).
    Article Google Scholar
  41. P. Walters, An Introduction to Ergodic Theory (Springer, New York, 2000).
    MATH Google Scholar
  42. B. Weiss, Single Orbit Dynamics (Am. Math. Soc., Providence, RI, 2000).
    MATH Google Scholar

Download references