Uniqueness theorem for locally antipodal Delaunay sets (original) (raw)
Abstract
We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given 2_R_-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose 2_R_-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime View plans
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- E. S. Fedorov, An Introductionto the Theory of Figures (St. Petersburg, 1885); 2nd ed. (Akad. Nauk SSSR, Moscow, 1953), Classics of Science [in Russian].
Google Scholar - L. Sohncke, “Die regelmässigen ebenen Punktsysteme von unbegrenzter Ausdehnung, ” J. Reine Angew. Math 77, 47–101 (1874).
MathSciNet Google Scholar - A. Schoenflies, Krystallsystemeund Krystallstructur (B.G. Teubner, Leipzig, 1891).
Google Scholar - L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume (Erste Abh.), ” Math. Ann. 70 (3), 297–336 (1911).
Article MathSciNet MATH Google Scholar - L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abh.): Die Gruppen mit einem endlichen Fundamentalbereich, ” Math. Ann. 72 (3), 400–412 (1912).
Article MathSciNet MATH Google Scholar - B. N. Delone, “Geometry of positive quadratic forms, ” Usp. Mat. Nauk 3, 16–62 (1937).
MathSciNet Google Scholar - B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points, ” Dokl. Akad. Nauk SSSR 227 (1), 19–21 (1976) [Sov. Math., Dokl. 17 (2), 319–322 (1976)].
MathSciNet MATH Google Scholar - N. P. Dolbilin, “Crystal criterion and locally antipodal Delaunay sets, ” Vestn. Chelyab. Gos. Univ., No. 3, 6–17 (2015).
MathSciNet Google Scholar - N. P. Dolbilin and A. N. Magazinov, “Locally antipodal Delaunay sets, ” Usp. Mat. Nauk 70 (5), 179–180 (2015) [Russ. Math. Surv. 70, 958–960 (2015)].
Article MathSciNet MATH Google Scholar - R. P. Feynman, R. B. Leighton, and M. Sands, TheFeynman Lectures on Physics (Addison Wesley, Reading, MA, 1964), Vol. II, Ch. 30.
Google Scholar
Author information
Authors and Affiliations
- Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia
N. P. Dolbilin & A. N. Magazinov
Authors
- N. P. Dolbilin
- A. N. Magazinov
Corresponding author
Correspondence toN. P. Dolbilin.
Additional information
Original Russian Text © N.P. Dolbilin, A.N. Magazinov, 2016, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 294, pp. 230–236.
Rights and permissions
About this article
Cite this article
Dolbilin, N.P., Magazinov, A.N. Uniqueness theorem for locally antipodal Delaunay sets.Proc. Steklov Inst. Math. 294, 215–221 (2016). https://doi.org/10.1134/S0081543816060134
- Received: 18 April 2016
- Published: 23 October 2016
- Issue date: August 2016
- DOI: https://doi.org/10.1134/S0081543816060134