Local Theory of Regular Systems and Delone Sets (original) (raw)
References
I. A. Baburin, M. Bouniaev, N. Dolbilin, N. Yu. Erokhovets, A. Garber, S. V. Krivovichev, and E. Schulte, “On the origin of crystallinity: A lower bound for the regularity radius of Delone sets,” Acta Crystallogr., Sect. A 74 (6), 616–629 (2018). ArticleMathSciNet Google Scholar
L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich,” Math. Ann. 72 (3), 400–412 (1912). ArticleMathSciNet Google Scholar
B. N. Delone, “Geometry of positive quadratic forms,” Usp. Mat. Nauk, No. 3, 16–62 (1937). Google Scholar
B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points,” Sov. Math., Dokl. 17, 319–322 (1976) [transl. from Dokl. Akad. Nauk SSSR 227 (1), 19–21 (1976)]. Google Scholar
B. Delone, N. Padurov, and A. Aleksandrov, Mathematical Foundations of Structural Analysis of Crystals and Determination of the Main Parallelepiped of Repeatability Using X-Rays (ONTI, Leningrad, 1934) [in Russian]. Google Scholar
N. P. Dolbilin, “Crystal criterion and locally antipodal Delaunay sets,” Vestn. Chel. Gos. Univ., No. 3, 6–17 (2015). MathSciNet Google Scholar
N. P. Dolbilin, “Delone sets in \(\mathbb R^3\) with \(2R\)-regularity conditions,” Proc. Steklov Inst. Math. 302, 161–185 (2018) [transl. from Tr. Mat. Inst. Steklova 302, 176–201 (2018)]. ArticleMathSciNet Google Scholar
N. P. Dolbilin, “From local identity to global symmetry,” in Discrete Mathematics and Its Applications: Materials of the XIII Lupanov Int. Semin. (Fac. Mech. Math., Moscow State Univ., Moscow, 2019), pp. 13–22 [in Russian]. Google Scholar
N. Dolbilin, “Local groups in Delone sets,” in Numerical Geometry, Grid Generation and Scientific Computing (Springer, Cham, 2021), Lect. Notes Comput. Sci. Eng. 143, pp. 3–11; arXiv: 2011.00558 [math.MG]. Chapter Google Scholar
N. Dolbilin, A. Garber, U. Leopold, E. Schulte, and M. Senechal, “On the regularity radius of Delone sets in \(\mathbb R^3\),” Discrete Comput. Geom. 66, 996–1024 (2021). ArticleMathSciNet Google Scholar
N. P. Dolbilin, J. C. Lagarias, and M. Senechal, “Multiregular point systems,” Discrete Comput. Geom. 20 (4), 477–498 (1998). ArticleMathSciNet Google Scholar
N. P. Dolbilin and A. N. Magazinov, “Locally antipodal Delaunay sets,” Russ. Math. Surv. 70 (5), 958–960 (2015) [transl. from Usp. Mat. Nauk 70 (5), 179–180 (2015)]. ArticleMathSciNet Google Scholar
N. Dolbilin and D. Schattschneider, “The local theorem for tilings,” in Quasicrystals and Discrete Geometry: Proc. 1995 Fall Programme Fields Inst., Toronto, 1995 (Am. Math. Soc., Providence, RI, 1998), Fields Inst. Monogr. 10, pp. 193–199. Google Scholar
N. P. Dolbilin and M. I. Shtogrin, “Local criterion for crystal structures,” in Abstract. IX All-Union Geom. Conf., Kishinev, 1988 (Inst. Math. Acad. Sci. Mold. SSR, Kishinev, 1988), p. 99 [in Russian]. Google Scholar
N. P. Dolbilin and M. I. Shtogrin, “Crystallographic properties of local groups of a Delone set in a Euclidean plane,” Comput. Math. Math. Phys. 62 (8), 1265–1274 (2022) [transl. from Zh. Vychisl. Mat. Mat. Fiz. 62 (8), 1289–1299 (2022)]. ArticleMathSciNet Google Scholar
N. P. Dolbilin and M. I. Shtogrin, “Delone sets and tilings: Local approach,” Proc. Steklov Inst. Math. 318, 65–89 (2022) [transl. from Tr. Mat. Inst. Steklova 318, 73–98 (2022)]. ArticleMathSciNet Google Scholar
N. Dolbilin and M. Shtogrin, “Local groups in Delone sets in the Euclidean space,” Acta Crystallogr., Sect. A 78 (5), 452–458 (2022). Article Google Scholar
P. Engel, Geometric Crystallography: An Axiomatic Introduction to Crystallography (D. Reidel Publ., Dordrecht, 1986). Book Google Scholar
E. S. Fedorov, Elements of the Study of Figures (Imp. Akad. Nauk, St. Petersburg, 1885; Akad. Nauk SSSR, Moscow, 1953) [in Russian]. Google Scholar
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison Wesley, Reading, MA, 1964), Vol. II, Ch. 30. Book Google Scholar
T. C. Hales, “A proof of the Kepler conjecture,” Ann. Math., Ser. 2, 162 (3), 1065–1185 (2005); arXiv: math/9811078 [math.MG]. ArticleMathSciNet Google Scholar
Hilbert’s Problems, Ed. by P. S. Aleksandrov (Nauka, Moscow, 1969) [in Russian]. Google Scholar
J. Kepler, Strena seu de nive sexangula (1611). Engl. transl.: The Six-Cornered Snowflake (Paul Dry Books, Philadelphia, 2010). Google Scholar
R. Penrose, “The role of aesthetics in pure and applied mathematical research,” Bull. Inst. Math. Appl. 10 (7–8), 266–271 (1974). Google Scholar
M. I. Shtogrin, “Bound on the order of spider’s axis in a locally regular Delone system,” in Geometry, Topology, Algebra and Number Theory, Applications: Abstr. Int. Conf. dedicated to the 120th anniversary of Boris Delone, Moscow, 2010 (Steklov Math. Inst., Moscow, 2010), pp. 168–169 [in Russian]. Google Scholar
L. Sohncke, Entwicklung einer Theorie der Krystallstruktur (Teubner, Leipzig, 1879). Google Scholar