Local Theory of Regular Systems and Delone Sets (original) (raw)

References

  1. I. A. Baburin, M. Bouniaev, N. Dolbilin, N. Yu. Erokhovets, A. Garber, S. V. Krivovichev, and E. Schulte, “On the origin of crystallinity: A lower bound for the regularity radius of Delone sets,” Acta Crystallogr., Sect. A 74 (6), 616–629 (2018).
    Article MathSciNet Google Scholar
  2. L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume. (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich,” Math. Ann. 72 (3), 400–412 (1912).
    Article MathSciNet Google Scholar
  3. B. N. Delone, “Geometry of positive quadratic forms,” Usp. Mat. Nauk, No. 3, 16–62 (1937).
    Google Scholar
  4. B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points,” Sov. Math., Dokl. 17, 319–322 (1976) [transl. from Dokl. Akad. Nauk SSSR 227 (1), 19–21 (1976)].
    Google Scholar
  5. B. Delone, N. Padurov, and A. Aleksandrov, Mathematical Foundations of Structural Analysis of Crystals and Determination of the Main Parallelepiped of Repeatability Using X-Rays (ONTI, Leningrad, 1934) [in Russian].
    Google Scholar
  6. N. P. Dolbilin, “Crystal criterion and locally antipodal Delaunay sets,” Vestn. Chel. Gos. Univ., No. 3, 6–17 (2015).
    MathSciNet Google Scholar
  7. N. P. Dolbilin, “Delone sets in \(\mathbb R^3\) with \(2R\)-regularity conditions,” Proc. Steklov Inst. Math. 302, 161–185 (2018) [transl. from Tr. Mat. Inst. Steklova 302, 176–201 (2018)].
    Article MathSciNet Google Scholar
  8. N. P. Dolbilin, “From local identity to global symmetry,” in Discrete Mathematics and Its Applications: Materials of the XIII Lupanov Int. Semin. (Fac. Mech. Math., Moscow State Univ., Moscow, 2019), pp. 13–22 [in Russian].
    Google Scholar
  9. N. Dolbilin, “Local groups in Delone sets,” in Numerical Geometry, Grid Generation and Scientific Computing (Springer, Cham, 2021), Lect. Notes Comput. Sci. Eng. 143, pp. 3–11; arXiv: 2011.00558 [math.MG].
    Chapter Google Scholar
  10. N. Dolbilin, A. Garber, U. Leopold, E. Schulte, and M. Senechal, “On the regularity radius of Delone sets in \(\mathbb R^3\),” Discrete Comput. Geom. 66, 996–1024 (2021).
    Article MathSciNet Google Scholar
  11. N. Dolbilin, A. Garber, E. Schulte, and M. Senechal, “Bounds for the regularity radius of Delone sets,” Discrete Comput. Geom. (2024), https://doi.org/10.1007/s00454-024-00666-6; arXiv: 2306.11127 [math.MG].
    Article Google Scholar
  12. N. P. Dolbilin, J. C. Lagarias, and M. Senechal, “Multiregular point systems,” Discrete Comput. Geom. 20 (4), 477–498 (1998).
    Article MathSciNet Google Scholar
  13. N. P. Dolbilin and A. N. Magazinov, “Locally antipodal Delaunay sets,” Russ. Math. Surv. 70 (5), 958–960 (2015) [transl. from Usp. Mat. Nauk 70 (5), 179–180 (2015)].
    Article MathSciNet Google Scholar
  14. N. Dolbilin and D. Schattschneider, “The local theorem for tilings,” in Quasicrystals and Discrete Geometry: Proc. 1995 Fall Programme Fields Inst., Toronto, 1995 (Am. Math. Soc., Providence, RI, 1998), Fields Inst. Monogr. 10, pp. 193–199.
    Google Scholar
  15. N. P. Dolbilin and M. I. Shtogrin, “Local criterion for crystal structures,” in Abstract. IX All-Union Geom. Conf., Kishinev, 1988 (Inst. Math. Acad. Sci. Mold. SSR, Kishinev, 1988), p. 99 [in Russian].
    Google Scholar
  16. N. P. Dolbilin and M. I. Shtogrin, “Crystallographic properties of local groups of a Delone set in a Euclidean plane,” Comput. Math. Math. Phys. 62 (8), 1265–1274 (2022) [transl. from Zh. Vychisl. Mat. Mat. Fiz. 62 (8), 1289–1299 (2022)].
    Article MathSciNet Google Scholar
  17. N. P. Dolbilin and M. I. Shtogrin, “Delone sets and tilings: Local approach,” Proc. Steklov Inst. Math. 318, 65–89 (2022) [transl. from Tr. Mat. Inst. Steklova 318, 73–98 (2022)].
    Article MathSciNet Google Scholar
  18. N. Dolbilin and M. Shtogrin, “Local groups in Delone sets in the Euclidean space,” Acta Crystallogr., Sect. A 78 (5), 452–458 (2022).
    Article Google Scholar
  19. P. Engel, Geometric Crystallography: An Axiomatic Introduction to Crystallography (D. Reidel Publ., Dordrecht, 1986).
    Book Google Scholar
  20. E. S. Fedorov, Elements of the Study of Figures (Imp. Akad. Nauk, St. Petersburg, 1885; Akad. Nauk SSSR, Moscow, 1953) [in Russian].
    Google Scholar
  21. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison Wesley, Reading, MA, 1964), Vol. II, Ch. 30.
    Book Google Scholar
  22. T. C. Hales, “A proof of the Kepler conjecture,” Ann. Math., Ser. 2, 162 (3), 1065–1185 (2005); arXiv: math/9811078 [math.MG].
    Article MathSciNet Google Scholar
  23. Hilbert’s Problems, Ed. by P. S. Aleksandrov (Nauka, Moscow, 1969) [in Russian].
    Google Scholar
  24. J. Kepler, Strena seu de nive sexangula (1611). Engl. transl.: The Six-Cornered Snowflake (Paul Dry Books, Philadelphia, 2010).
    Google Scholar
  25. R. Penrose, “The role of aesthetics in pure and applied mathematical research,” Bull. Inst. Math. Appl. 10 (7–8), 266–271 (1974).
    Google Scholar
  26. M. I. Shtogrin, “Bound on the order of spider’s axis in a locally regular Delone system,” in Geometry, Topology, Algebra and Number Theory, Applications: Abstr. Int. Conf. dedicated to the 120th anniversary of Boris Delone, Moscow, 2010 (Steklov Math. Inst., Moscow, 2010), pp. 168–169 [in Russian].
    Google Scholar
  27. L. Sohncke, Entwicklung einer Theorie der Krystallstruktur (Teubner, Leipzig, 1879).
    Google Scholar

Download references