Isotope geochemistry (O, C, S, Sr) and Rb-Sr age of carbonatites in central Tuva (original) (raw)
References
A. M. Blokh and I. V. Dagaeva, “Origin of Sulfates from Middle Paleozoic Sedimentary Sequences in the Tuva Trough,” Sov. Geol., No. 10, 91–99 (1987).
A. V. Bolonin and A. V. Nikiforov, “Chemical Composition of Minerals from Carbonatites of the Karasug Deposit in Tuva,” Geol. Rudn. Mestorozhd. 46(5), 427–443 (2004) [Geol. Ore Deposits 46 (5), 372–386 (2004)]. Google Scholar
A. V. Bolonin and F. I. Zhukov, “C, O, and S Isotopic Characteristics of Carbonatites from a Mineral Deposit in Southern Siberia,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 9, 67–72 (1983).
A. V. Bolonin, T. M. Kaikova, and G. M. Komarnitsky, “The Carbonatite Origin of an Iron-Fluorite-Barite-Rare Earth Element Deposit,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 3, 59–64 (1984).
I. V. Chernyshev, N. I. Serdyuk, D. Z. Zhuravlev, et al., “High-Precision Strontium Isotopic Analysis Using One-Filament Ionization Mode,” in Mass Spectrometry and Isotopic Geology (Nauka, Moscow, 1983), pp. 30–43 [in Russian]. Google Scholar
P. Deines, “Stable Isotope Variation in Carbonatites,” in Carbonatites: Genesis and Evolution (Unwin Hyman, London, 1989), pp. 301–359. Google Scholar
Geological Map of the Tuvinskaya ASSR, Scale 1: 500000, Ed. by A. A. Podkamenny and M. L. Sherman (VSEGEI, Leningrad, 1983) [in Russian]. Google Scholar
R. L. Hay and J. R. O’Neil, “Carbonatite Tuffs in the Laetolil Beds of Tanzania and the Kaiserstuhl in Germany,” Contrib. Mineral. Petrol. 82, 403–406 (1983). Article Google Scholar
M. N. Kandinov and E. S. Kharlamov, “Physicochemical Conditions of Fluorite Formation from Halogenic-Alkaline Melt-Brines,” in Theory and Practice of Thermobarogeochemistry (Nauka, Moscow, 1978), pp. 137–138 [in Russian]. Google Scholar
A. P. Khomyakov and E. I. Semenov, Hydrothermal Deposits of Rare Earth Fluorcarbonates (Nauka, Moscow, 1971) [in Russian]. Google Scholar
V. N. Kuleshov, Isotopic Characteristics and Origin of Deep Carbonatites (Nauka, Moscow, 1986) [in Russian]. Google Scholar
N. A. Kulik and S. V. Mel’gunov, “Evolution of Mineralization in Multicomponent Hematite-Fluorite-Bastnaesite Occurrences of Southern Tuva,” Geol. Geofiz. 33(2), 93–103 (1992). Google Scholar
K. R. Ludwig, ISOPLOT/Ex. Version 2.49. A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center Spec. Publ., 2001), No. 1a.
R. H. Mitchell and H. R. Krouse, “Isotopic Composition of Sulfur in Carbonatite at Mountain Pass, California,” Nature 231, 182 (1971). Google Scholar
R. H. Mitchell and H. R. Krouse, “Sulphur Isotope Geochemistry of Carbonatites,” Geochim. Cosmochim. Acta 39, 1505–1513 (1975). Article Google Scholar
A. V. Nikiforov, A. V. Bolonin, A. M. Sugorakova, et al., “Carbonatites of Central Tuva: Geological Structure, Mineral and Chemical Composition,” Geol. Rudn. Mestorozhd. 47(4), 1–23 (2005) [Geol. Ore Deposits 47 (4), 326–345 (2005)]. Google Scholar
A. V. Nikiforov, V. V. Yarmolyuk, B. G. Pokrovsky, et al., “Late Mesozoic Carbonatites of Western Transbaikalia: Mineralogical, Chemical, and Isotopic (O, C, S, Sr) Characteristics and Relationships to Alkaline Magmatism,” Petrologiya 8(3), 309–336 (2000) [Petrology 8 (3), 278–283 (2000)]. Google Scholar
H. Ohmoto and R. O. Rye, “Isotopes of Sulfur and Carbon,” in Geochemistry of Hydrothermal Ore Deposits (Wiley, New York, 1979), pp. 509–567. Google Scholar
D. O. Ontoev, “Problems of Geology of Fluorine-Rare Earth-Iron Deposits,” Geol. Rudn. Mestorozhd. 5(6), 18–33 (1963). Google Scholar
B. G. Pokrovsky, Crustal Contamination of Mantle Magmas from Isotope Geochemistry Data (Nauka, Moscow, 2000) [in Russian]. Google Scholar
L. S. Puzanov, “Genetic Type of Fluorite-Barite-Iron Mineralization in the Tuvinskaya ASSR,” Dokl. Akad. Nauk SSSR 225(3), 669–672 (1975). Google Scholar
H. Sakai, T. J. Casadevall, and J. G. Moore, “Chemistry and Isotope Ratios of Sulfur in Basalts and Volcanic Gases at Kilauea Volcano, Hawaii,” Geochim. Cosmochim. Acta 46, 729–738 (1982). Article Google Scholar
H. Sakai, D. J. Des Marais, A. Ueda, and J. C. Moore, “Concentrations and Isotope Ratios of Carbon, Nitrogen, and Sulphur in Ocean-Floor Basalts,” Geochim. Cosmochim. Acta. 48, 2433–2441 (1984). Article Google Scholar
L. D. Shorygina, Cenozoic Stratigraphy of Western Tuva (Tr. Geol. Inst. Akad. Nauk SSSR, Moscow, 1960), Vol. 26, pp. 165–203. Google Scholar
V. V. Shurupov, N. I. Polevaya, and S. L. Mirkina, “Mesozoic Mineralization and Hydrothermal Alteration of Some Intrusive Rocks in Tuva,” in Absolute Dating of Tectonomagmatic Cycles and Stages of Ore Mineralization from 1964 Data (Nauka, Moscow, 1966), pp. 317–325 [in Russian]. Google Scholar
B. E. Taylor, “Magmatic Volatiles: Isotopic Variations of C, H, and S,” Reviews in Mineral. 16, 185–225 (1986). Google Scholar
H. P. Taylor, J. Frechen Jr., and E. T. Degens, “Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alno District, Sweden,” Geochim. Cosmochim. Acta 31, 407–430 (1967). Article Google Scholar
R. N. Thompson, P. M. Smith, S. A. Gibson, et al., “Ankerite Carbonatite from Swartbooisdrif, Namibia: the First Evidence for Magmatic Ferrocarbonatite,” Contrib. Mineral. Petrol. 143, 377–395 (2002). Google Scholar
Y. F. Zheng, “Oxygen Isotope Fractionation in Carbonate and Sulfate Minerals,” Geochem. J. 33, 109–126 (1999). Google Scholar
Y. F. Zheng and K. Simon, “Oxygen Isotope Fractionation in Hematite and Magnetite: A Theoretical Calculation and Application to Geothermometry of Metamorphic Iron-Formation,” Eur. J. Mineral. 3, 877–886 (1991). Google Scholar
D. Z. Zhuravlev, I. V. Chernyshov, A. A. Agapova, and N. I. Serdyuk, “High-Precision Neodymium Isotopic Analysis of Rocks,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 12, 23–40 (1983).