Genesis and formation conditions of deposits in the unique Strel’tsovka Molybdenum-Uranium ore field: New mineralogical, geochemical, and physicochemical evidence (original) (raw)

References

  1. A. P. Aleshin, J. Bonhoure, V. I. Velichkin, and M. Cuney, “REE Patterns in Pitchblende and Post-Ore Mineralization in the Streltsovsky Uranium Ore Field (Russia): Scientific and Applied Aspects,” in Proceedings of IAGOD Symposium on Understanding the Genesis of Ore Deposits to Meet the Demands of the 21st Century (Moscow, 2006) CD-ROM Version.
  2. A. P. Aleshin, V. I. Velichkin, M. Cuney, and Yu. M. Dymkov, “Polyphase Coffinite-Like U-Si Metagel and Its Role in Uranium Redistribution in the Mo-U Deposits of the Streltsovsky Ore Field (Transbaikal Region, Russia),” in Proceedings of the International Symposium IAEA on Uranium Production and Raw Materials for the Nuclear Fuel Cycle, Vienna, Austria, 2005 (IAEA, Viena, 2006), pp. 265–259.
    Google Scholar
  3. A. P. Aleshin, V. I. Velichkin, M. Cuney, et al., “Ontogeny and Typomorphic Features of Uranium Mineralization at Mo-U Deposits of the Streltsovsky Caldera (Transbaikal Region, Russia),” in Proceedings of the International Symposium on Uranium Deposits: from Their Genesis to Their Environmental Aspects (Prague, 2002), pp. 29–32.
  4. O. V. Andreeva and V. A. Golovin, “Metasomatic Processes at Uranium Deposits of Tulukui Caldera, Eastern Transbaikal Region Russia,” Geol. Rudn. Mestorozhd. 40(3), 205–220 (1998) [Geol. Ore Deposits 40 (3), 184–196 (1998)].
    Google Scholar
  5. O. V. Andreeva, F. I. Wolfson, V. A. Golovin, and G. I. Rossman, “The Behavior of Uranium during Low-Temperature Alteration of Host Rocks in Uranium Deposits,” Geokhimiya 28(2), 206–215 (1990).
    Google Scholar
  6. O. V. Andreeva, V. A. Golovin, P. S. Kozlova, et al., “Evolution of Mesozoic Magmatism and Ore-Forming Metasomatic Processes in the Southeastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 38(2), 115–130 (1996) [Geol. Ore Deposits 38 (2), 101–113 (1996)].
    Google Scholar
  7. E. V. Badanina, I. V. Veksler, R. Thomas, et al., “Magmatic Evolution of Li-F, Rare-Metal Granites. A Case Study of Melt Inclusions in the Khangilay Complex, Eastern Transbaikalia (Russia),” Chem. Geol. 210, 113–133 (2004).
    Article Google Scholar
  8. E. V. Badanina, R. B. Trumbull, P. Dulski, et al., “The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites. A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikal Region, Russia,” Can. Mineral. 44, 667–692 (2006).
    Article Google Scholar
  9. M. Bau, “Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect,” Contrib. Mineral. Petrol. 123, 323–333 (1996).
    Article Google Scholar
  10. A. P. Bocharov, V. E. Vishnyakov, Yu. A. Igoshin, et al., “Stratigraphic and Absolute Ages of Volcanic Rocks in Some Mesozoic Depressions in Transbaikal Region,” in Geology of Hydrothermal Ore Deposits (Nauka, Moscow, 1978), pp. 243–256 [in Russian].
    Google Scholar
  11. B. Bunh, J. Schneider, P. Dulski, and A. H. Rankin, “Fluid-Rock Interaction during Progressive Migration of Carbonate Fluids, Derived from Small-Scale Trace Element and Sr, Pb Isotope Distribution in Hydrothermal Fluorite,” Geochim. Cosmochim. Acta 67(23), 4577–4595 (2003).
    Article Google Scholar
  12. A. Chabiron, A. P. Aleshin, M. Cuney, et al., “Geochemistry of the Rhyolitic Magma from the Strel’tsovka Caldera (Transbaikal Region, Russia): A Melt Inclusion Study,” Chem. Geol 175, 273–290 (2001).
    Article Google Scholar
  13. A. Chabiron, M. Cuney, and B. Poty, “Possible Uranium Sources for the Largest Uranium District Associated with Volcanism: The Strel’tsovka Caldera (Transbaikal Region, Russia),” Miner. Deposita 38, 127–140 (2003).
    Google Scholar
  14. I. V. Chernyshev and V. N. Golubev, “The Strel’tsovskoe Deposit, Eastern Transbaikal Region: Isotope Dating of Mineralization in Russia’s Largest Uranium Deposit,” Geokhimiya 34(10), 924–927 (1996) [Geochem. Int. 34 (10), 834–846 (1996)].
    Google Scholar
  15. J. Dubessy, M. Pagel, J.-M. Beny, et al., “Radiolysis Evidenced by H2-O2 and H2-Bearing Fluid Inclusions in Three Uranium Deposits,” Geochim. Cosmochim. Acta 52, 1115–1167 (1988).
    Article Google Scholar
  16. B. F. Dzhurinsky, “Periodicity of Lanthanide Properties,” Zh. Neorg. Khim. 25, 41–46 (1980).
    Google Scholar
  17. A. A. Dukhovsky, V. A. Amantov, N. A. Artamonova, et al., “Seismic and Gravity Images of Major Ore Districts and Fields of the Southeastern Argun Area (Eastern Transbaikal Region, Russia),” Geol. Rudn. Mestorozhd. 40(2), 99–113 (1998) [Geol. Ore Deposits 40 (2), 87–99 (1998)].
    Google Scholar
  18. I. Fidelis and S. Siekierski, “The Regularities in Stability Constants of Some Rare Earth Complexes,” J. Inorg. Nucl. Chem. 28, 185–188 (1966).
    Article Google Scholar
  19. I. Fidelis and S. Siekierski, “Regularities of Tetrad Effect in Complex Formation by f-Electron Elements: Double-Double Effect,” J. Inorg. Nucl. Chem. 33, 3191–3194 (1971).
    Article Google Scholar
  20. B. J. Fryer and R. P. Taylor, “Rare-Earth Element Distributions in Uraninites: Implications for Ore Genesis,” Chem. Geol. 63(1–2), 101–108 (1987).
    Article Google Scholar
  21. H. Hidaka and F. Gauthier-Lafaye, “Neutron Capture Effects on Sm and Gd Isotopes in Uraninites,” Geochim. Cosmochim. Acta 65(6), 941–949 (2001).
    Article Google Scholar
  22. W. Irber, “The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites,” Geochim. Cosmochim. Acta 63(3–4), 489–508 (1999).
    Article Google Scholar
  23. L. P. Ishchukova, I. S. Modnikov, and I. V. Sychev, “Ore-Forming Uranium Systems of Continental Volcanic Areas,” Geol. Rudn. Mestorozhd. 33(3), 16–25 (1991).
    Google Scholar
  24. L. P. Ishchukova, Yu. A. Igoshin, B. V. Avdeev, et al., Geology of the Urulyungui Ore District and Molybdenum-Uranium Deposits of the Streltsovsky Ore Field (Geoinformmark, Moscow, 1998) [in Russian].
    Google Scholar
  25. P. A. Kotov and A. I. Kotova, “The Garsonui Deposit,” in Ore Deposits of Transbaikal Region, Russia (Geoinformmark, Moscow, 1995), Vol. 1, Book 2, pp. 179–184 [in Russian].
    Google Scholar
  26. T. L. Krylova, A. P. Aleshin, T. Lhomme, et al., “New Data on the Formation Conditions of the Uranium Ores at the Streltsovsky and Antei Deposits (Eastern Transbaikal Region, Russia),” in Proceedings of IAGOD Symposium on Understanding the Genesis of Ore Deposits to Meet the Demands of the 21st Century (Moscow, 2006), CD-ROM Version.
  27. T. L. Krylova, A. P. Aleshin, V. I. Velichkin, et al., “Physico-Chemical Conditions of Uranium Ore Formation at the Streltsovsky and Antei Deposits (Eastern Transbaikal Region, Russia),” in Proceedings of the International Symposium on Uranium Geochemistry, 2003 (Nancy, France, 2003), pp. 205–208.
    Google Scholar
  28. V. A. Kuznetsov, I. A. Andreeva, V. I. Kovalenko, et al., “Abundance of Water and Trace Elements in the Ongonite Melt of the Ary-Bulak Massif, Eastern Baikal Region: Evidence from Study of Melt Inclusions,” Dokl. Akad. Nauk 396(4), 524–529 (2004) [Dokl. Earth Sci. 396 (4), 571–576 (2004)].
    Google Scholar
  29. V. I. Malkovsky and A. A. Pek, Computer Simulation of Radionuclide Transport through Thermal Convection of Groundwater from Borehole Repositories (Lawrence Berkeley Laboratory, Univ. California, 1993) Report LBL-36385, UC-603, RAC-3.
  30. V. I. Malkovsky, A. A. Pek, B. I. Omel’yanenko, and E. G. Drozhko, “Numerical Modeling of Radionuclide Transport through Thermal Convection of Groundwater from High-Level Nuclear Borehole Repository,” Izv. Ross. Akad. Nauk, Energ., No. 3, 113–122 (1994).
  31. I. V. Mel’nikov, “Specific Mineralogical-Geochemical Features of the Formation of Uranium Mineralization,” in Contributions to Geology of Uranium Deposits (VIMS, Moscow, 1985), Vol. 93, Book 2, pp. 74–82 [in Russian].
    Google Scholar
  32. T. Mioduski, “The “Regular” and “Inverse” Tetrad Effect,” Comments Inorg. Chem. 19, 93–119 (1997).
    Article Google Scholar
  33. M. V. Mironenko, “Physicochemical Model of Hydrothermal Mineral Formation at the Antei Deposit,” Contributions to Geology of Uranium Deposits (VIMS, Moscow, 1985), Vol. 93, Book 2, pp. 83–87 [in Russian].
    Google Scholar
  34. I. S. Modnikov, N. A. Perets, and I. V. Sychev, “Formation Conditions of Uranium Mineralization in the Basement of Volcanic Depressions,” Sov. Geol., No. 1, 24–33 (1984).
  35. I. Monecke, U. Kempe, J. Monecke, et al., “Tetrad Effect in Rare Earth Element Distribution Patterns: A Method of Quantification with Application to Rock and Mineral Samples from Granite-Related Rare Metal Deposits,” Geochim. Cosmochim. Acta 66(7), 1185–1196 (2002).
    Article Google Scholar
  36. G. B. Naumov, Principles of the Physicochemical Model of Uranium Mineralization (Atomizdat, Moscow, 1978) [in Russian].
    Google Scholar
  37. V. B. Naumov, V. I. Kovalenko, and V. A. Dorofeeva, “Fluorine Concentration in Magmatic Melts: Evidence from Inclusions in Minerals,” Geochem. Int. 36(2), 117–127 (1998).
    Google Scholar
  38. G. B. Naumov, M. V. Mironenko, A. N. Salazkin, et al., “New Data on the Geochemical Formation Conditions of the Streltsovsky Ore Field and Their Applied Implications,” in Contributions to Geology of Uranium Deposits (VIMS, Moscow, 1985), Vol. 93, Book, 2, pp. 65–74 [in Russian].
    Google Scholar
  39. C. Peiffert, C. Nguyen-Trung, and M. Cuney, “Uranium in Granitic Magmas. Part 2. Experimental Determination of Uranium Solubility and Fluid-Melt Partition Coefficients in the Uranium Oxide-Haplogranite-H2O-NaX (X = Cl, F) System at 770°C, 2 Kb,” Geochim. Cosmochim. Acta 60, 1515–1529 (1996).
    Article Google Scholar
  40. J. R. Perez, S. A. Banwart, and I. Puigdomenech, “The Kinetics of O2(Aq) Reduction by Structural Ferrous Iron in Naturally Occurring Ferrous Silicate Minerals,” Appl. Geochem. 20, 2003–2016 (2005).
    Article Google Scholar
  41. Reviews in Mineralogy, Vol. 13: Micas (BookCrafters, Chelsea, 1984).
  42. S. B. Romberger, “Uranium Transformation and Accumulation in Hydrothermal Systems at Temperatures up to 300°C: Geological Implications,” in Geology, Geochemistry, Mineralogy, and Estimation Methods of Uranium Deposits (Mir, Moscow, 1988), pp. 28–36.
    Google Scholar
  43. B. L. Rybalov, “Localization of Late Mesozoic Ore Deposits in the Eastern Transbaikal Region (Russia),” Geol. Rudn. Mestorozhd. 42(4), 354–368 (2000) [Geol. Ore Deposits 42 (4), 340–350 (2000)].
    Google Scholar
  44. J. H. Sevigny, “Monazite Controlled Sm/Nd Fractionation: An Ion Microprobe Study of Garnet Phenocrysts,” Geochim. Cosmochim. Acta 57, 4095–4102 (1993).
    Article Google Scholar
  45. K. Shmulovich, W. Heinrich, P. Moller, and P. Dulski, “Experimental Determination of REE Fractionation between Liquid and Vapour in the System NaCl-H2O and CaCl2-H2O up to 450°C,” Contrib. Mineral. Petrol. 144, 257–273 (2002).
    Article Google Scholar
  46. Y. Takahashi, H. Yoshiba, N. Sato, et al., “W- and M-Type Tetrad Effects in REE Patterns for Water-Rock Systems in the Tono Uranium Deposit, Central Japan,” Chem. Geol. 184, 311–335 (2002).
    Article Google Scholar
  47. V. A. Uspensky, A. V. Kochenov, and A. E. Khaldei, “Coaly Substance in a Hydrothermal Uranium Deposit,” Litol. Polezn. Iskop. 21(1), 104–110 (1986).
    Google Scholar
  48. I. V. Veksler, “Liquid Immiscibility and Its Role at the Magmatic Hydrothermal Transition: A Summary of Experimental Studies,” Chem. Geol. 210, 7–31 (2004).
    Article Google Scholar
  49. I. V. Veksler, A. M. Dorfman, M. Kamenetsky, et al., “Partitioning of Lanthanides and Y between Immiscible Silicate and Fluoride Melts, Fluorite and Cryolite and the Origin of the Lanthanide Tetrad Effect in Igneous Rocks,” Geochim. Cosmochim. Acta 69(11), 2847–2860 (2005).
    Article Google Scholar
  50. I. F. Vovk, Radiolysis of Underground Water and Its Geochemical Implications (Nedra, Moscow, 1979) [in Russian].
    Google Scholar
  51. H. Yurimoto, E. F. Duke, J. J. Papoke, and C. K. Shearer, “Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Result of Monazite Fractionation?,” Geochim. Cosmochim. Acta 54, 2141–2145 (1990).
    Article Google Scholar
  52. V. A. Zharikov, I. P. Ivanov, B. I. Omel’yanenko, et al., “Experimental Study of the Solubility of Uraninite in Cranitic Melts and Fluid Solutions at High Pressures and Temperatures,” Int. Geol. Rev. 29, 997–1004 (1987).
    Article Google Scholar
  53. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Plate Tectonics in the Territory of the USSR (Nedra, Moscow, 1990) [in Russian].
    Google Scholar

Download references