Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock (original) (raw)

References

  1. L. Essen, J.V.L. Parry, Nature 176, 280 (1955)
    ADS Google Scholar
  2. Comptes Rendus de la 13e CGPM (1967/68), 103 (1969), https://www.bipm.org/utils/common/pdf/CGPM/CGPM13.pdf
  3. M.A. Kasevich, et al., Phys. Rev. Lett. 63, 612 (1989)
    ADS Google Scholar
  4. J. Reichert, et al., Opt. Commun. 172, 59 (1999)
    ADS Google Scholar
  5. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 237 (2002)
    ADS Google Scholar
  6. S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)
    ADS Google Scholar
  7. A.D. Ludlow, et al., Rev. Mod. Phys. 87, 637 (2015)
    ADS Google Scholar
  8. T.L. Nicholson, et al., Nat. Commun. 6, 6896 (2015)
    ADS Google Scholar
  9. N. Hunteman, et al., Phys. Rev. Lett. 116, 063001 (2016)
    ADS Google Scholar
  10. W.F. McGrew, et al., Nature 564, 87 (2018)
    ADS Google Scholar
  11. S.M. Brewer, et al., Phys. Rev. Lett. 123, 033201 (2019)
    ADS Google Scholar
  12. P. Gill, et al., National Physical Laboratory. Technical Supporting Document (2008), https://www.researchgate.net/publication/241531359_Optical_Atomic_Clocks_for_Space
  13. T. Mehlstäubler, et al., Rep. Prog. Phys. 81, 064401 (2018)
    ADS Google Scholar
  14. T. Rosenband, et al., Science 319, 1808 (2008)
    ADS Google Scholar
  15. R.M. Godun, et al., Phys. Rev. Lett. 113, 210801 (2014)
    ADS Google Scholar
  16. E. Peik, C. Tamm, Eur. Phys. Lett. 61, 181 (2003)
    ADS Google Scholar
  17. C.J. Campbell, et al., Phys. Rev. Lett. 108, 120802 (2012)
    ADS Google Scholar
  18. W.G. Rellergert, et al., Phys. Rev. Lett. 104, 200802 (2010)
    ADS Google Scholar
  19. G.A. Kazakov, et al., New J. Phys. 14, 083019 (2012)
    ADS Google Scholar
  20. E. Peik, M. Okhapkin, C. R. Phys. 16, 516 (2015)
    Google Scholar
  21. R. Mössbauer, Z. Phys. 151, 124 (1958)
    ADS Google Scholar
  22. R.V. Pound, G.A. Rebka, Phys. Rev. Lett. 3, 439 (1959)
    ADS Google Scholar
  23. D.E. Nagle, P.P. Craig, W.E. Keller, Nature 186, 707 (1960)
    ADS Google Scholar
  24. T. Katila, K. Riski, Hyperfine Interact. 13, 119 (1983)
    ADS Google Scholar
  25. B. Seiferle, et al., Nature 573, 243 (2019)
    ADS Google Scholar
  26. E.V. Tkalya, C. Schneider, J. Jeet, E.R. Hudson, Phys. Rev. C 92, 054324 (2015)
    ADS Google Scholar
  27. N. Minkov, A. Pálffy, Phys. Rev. Lett. 122, 162502 (2019)
    ADS Google Scholar
  28. L.A. Kroger, C.W. Reich, Nucl. Phys. A 259, 29 (1976)
    ADS Google Scholar
  29. C.W. Reich, R. Helmer, Phys. Rev. Lett. 64, 271 (1990)
    ADS Google Scholar
  30. R. Helmer, C.W. Reich, Phys. Rev. C 49, 1845 (1994)
    ADS Google Scholar
  31. B.R. Beck, et al., Phys. Rev. Lett. 98, 142501 (2007)
    ADS Google Scholar
  32. B.R. Beck, et al., LLNL-PROC-415170, 2009
  33. L. von der Wense, et al., Meas. Tech. 60, 1178 (2018)
    Google Scholar
  34. J. Jeet, et al., Phys. Rev. Lett. 114, 253001 (2015)
    ADS Google Scholar
  35. A. Yamaguchi, et al., New J. Phys. 17, 053053 (2015)
    ADS Google Scholar
  36. L. von der Wense, On the Direct Detection of 229m Th (Springer, Berlin, 2018)
  37. S. Stellmer, et al., Phys. Rev. A 97, 062506 (2018)
    ADS Google Scholar
  38. L. von der Wense, et al., Nature 533, 47 (2016)
    ADS Google Scholar
  39. B. Seiferle, et al., Phys. Rev. Lett. 118, 042501 (2017)
    ADS Google Scholar
  40. V.F. Strizhov, E.V. Tkalya, Sov. Phys. JETP 72, 387 (1991)
    Google Scholar
  41. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 76, 054313 (2007)
    ADS Google Scholar
  42. J. Thielking, et al., Nature 556, 321 (2018)
    ADS Google Scholar
  43. T. Masuda, et al., Nature 573, 238 (2019)
    ADS Google Scholar
  44. A. Yamaguchi, et al., Phys. Rev. Lett. 123, 222501 (2019)
    ADS Google Scholar
  45. J. Geist, Ph.D. Thesis, University of Heidelberg, 2020
  46. C.J. Campbell, et al., Phys. Rev. Lett. 106, 223001 (2011)
    ADS Google Scholar
  47. M. Morita, Prog. Theor. Phys. 49, 1574 (1973)
    ADS Google Scholar
  48. I.S. Batkin, Yad. Fiz. 29, 903 (1979)
    Google Scholar
  49. I.S. Batkin, Sov. J. Nucl. Phys. 29, 464 (1979)
    ADS Google Scholar
  50. V.A. Krutov, V.N. Fomenko, Ann. Phys. (Leipzig) 476, 291 (1968)
    ADS Google Scholar
  51. E.V. Tkalya, Sov. J. Nucl. Phys. 55, 1611 (1992)
    Google Scholar
  52. P. Kálmán, T. Keszthelyi, Phys. Rev. C 49, 324 (1994)
    ADS Google Scholar
  53. F.F. Karpeshin, et al., Phys. Lett. B 372, 1 (1996)
    ADS Google Scholar
  54. E.V. Tkalya, et al., Phys. Scr. 53, 296 (1996)
    ADS Google Scholar
  55. S. Matinyan, Phys. Rep. 298, 199 (1998)
    ADS Google Scholar
  56. F.F. Karpeshin, I.M. Band, M.B. Trzhaskovskaya, Nucl. Phys. A 654, 579 (1999)
    ADS Google Scholar
  57. S.G. Porsev, et al., Phys. Rev. Lett. 105, 182501 (2010)
    ADS Google Scholar
  58. C.J. Campbell, Trapping, laser cooling, and spectroscopy of thorium IV, Ph.D. thesis, Georgia Institute of Technology, USA, 2011
  59. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. At. Nucl. 78, 715 (2015)
    Google Scholar
  60. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 95, 034310 (2017)
    ADS Google Scholar
  61. P.V. Bilous, Towards a nuclear clock with the 229Th isomeric transition, Ph.D. thesis, University of Heidelberg, Germany, 2018
  62. A.V. Andreev, et al., Phys. Rev. A 99, 013422 (2019)
    ADS Google Scholar
  63. R.A. Müller, A.V. Volotka, A. Surzhykov, Phys. Rev. A 99, 042517 (2019)
    ADS Google Scholar
  64. D. Kekez, et al., Phys. Rev. Lett. 55, 1366 (1985)
    ADS Google Scholar
  65. V.A. Zheltonozhskii, et al., Zh. Eksp. Teor. Fiz. 94, 32 (1988)
    Google Scholar
  66. V.A. Zheltonozhskii, et al., Sov. Phys. JETP 67, 16 (1988)
    Google Scholar
  67. S. Kishimoto, et al., Phys. Rev. Lett. 85, 1831 (2000)
    ADS Google Scholar
  68. S. Kishimoto, et al., Nucl. Phys. A 748, 3 (2005)
    ADS Google Scholar
  69. V.I. Romanenko, et al., Ukr. J. Phys. 57, 1119 (2012)
    Google Scholar
  70. J.C. Berengut, Phys. Rev. Lett. 121, 253002 (2018)
    ADS Google Scholar
  71. C. Zhang, et al., https://arXiv:2003.02429 (2020)
  72. L. von der Wense, et al., Phys. Rev. Lett. 119, 132503 (2017)
    ADS Google Scholar
  73. C.T. Chen, et al., Appl. Phys. B 97, 9 (2009)
    ADS Google Scholar
  74. T. Nakazato, et al., Opt. Express 24, 17149 (2016)
    ADS Google Scholar
  75. P.S. Halasyamani, W. Zhang, Inorg. Chem. 56, 12077 (2017)
    Google Scholar
  76. K. Shimamura, et al., J. Cryst. Growth 275, 128 (2005)
    ADS Google Scholar
  77. X. Zhang, et al., J. Opt. Soc. Am. B 28, 2236 (2011)
    ADS Google Scholar
  78. E.G. Villora, et al., Opt. Express 17, 12362 (2009)
    ADS Google Scholar
  79. L. Kang, et al., Inorg. Chem. 57, 11146 (2018)
    Google Scholar
  80. A. Cingöz, et al., Nature 482, 68 (2012)
    ADS Google Scholar
  81. A. Ozawa, et al., Nat. Commun. 8, 44 (2017)
    ADS Google Scholar
  82. N. Picqué, T.W. Hänsch, Nat. Photonics 13, 146 (2019)
    ADS Google Scholar
  83. J. Zhang, et al., Laser Phys. 7, 1025(2007)
    ADS Google Scholar
  84. G. Porat, et al., Nat. Photonics 12, 387 (2018)
    ADS Google Scholar
  85. C. Gohle, et al., Nature 436, 234 (2005)
    ADS Google Scholar
  86. R.J. Jones, et al., Phys. Rev. Lett. 94, 193201 (2005)
    ADS Google Scholar
  87. A. Ozawa, et al., Opt. Express 16, 6233 (2008)
    ADS Google Scholar
  88. D.C. Yost, et al., Nat. Phys. 5, 815 (2009)
    Google Scholar
  89. Y. Kobayashi, Opt. Express 21, 12865 (2013)
    ADS Google Scholar
  90. A. Ozawa, Y. Kobayashi, Phys. Rev. A 87, 022507 (2013)
    ADS Google Scholar
  91. I. Pupeza, et al., Nat. Photonics 7, 608(2013)
    ADS Google Scholar
  92. I. Pupeza, et al., Phys. Rev. Lett. 112, 103902 (2014)
    ADS Google Scholar
  93. H. Carstens, et al., Optica 3, 366 (2016)
    ADS Google Scholar
  94. C. Benko, et al., Nat. Photonics 8, 530 (2014)
    ADS Google Scholar
  95. A. Ozawa, et al., Opt. Express 23, 15107 (2015)
    ADS Google Scholar
  96. T. Saule, et al., APL Photonics 3, 101301 (2018)
    ADS Google Scholar
  97. T. Saule, et al., Nat. Commun. 10, 458 (2019)
    ADS Google Scholar
  98. A.K. Mills, et al., Rev. Sci. Instrum. 90, 083001 (2019)
    ADS Google Scholar
  99. J. Seres, et al., Opt. Express 27, 6618 (2019)
    ADS Google Scholar
  100. L. von der Wense, et al., https://arXiv:2001.08320 (2020)
  101. H.R. Noh, W. Jhe, Opt. Commun. 283, 2353 (2010)
    ADS Google Scholar
  102. W. Potzel, A. Forster, G.M. Kalvius, J. Phys. C 6, 691 (1976)
    Google Scholar
  103. D.A. Steck, Quantum and Atom Optics, http://steck.us/teaching
  104. L. von der Wense, et al., Hyperfine Interact. 240, 23 (2019)
    ADS Google Scholar
  105. M. Gembicky, et al., J. Synchrotron Radiat. 12, 665 (2005)
    Google Scholar
  106. J.L. Wiza, Nucl. Instrum. Methods 162, 587 (1979)
    ADS Google Scholar
  107. E.T. Rodine, P.L. Land, Phys. Rev. B 4, 2701 (1971)
    ADS Google Scholar
  108. S.A. Mahmoud, Solid State Sci. 4, 221 (2002)
    ADS Google Scholar
  109. Y. Huentupil, et al., Polyhedron 157, 225 (2019)
    Google Scholar
  110. R. Arancibia, et al., Polyhedron 171, 374 (2019)
    Google Scholar
  111. M. Bagge-Hansen, et al., Thin Solid Films 520, 4249 (2012)
    ADS Google Scholar
  112. V.K. Tripathi, R. Nagarajan, Inorg. Chem. 55, 12798 (2016)
    Google Scholar
  113. R. Haas, Nucl. Instrum. Methods A 874, 43 (2017)
    ADS Google Scholar
  114. L. Wang, et al., CrystEngComm 16, 10469 (2014)
    Google Scholar
  115. M. Moeini, et al., Mater. Lett. 81, 99 (2012)
    Google Scholar
  116. D. Hudry, et al., Chem. Eur. J. 19, 5297 (2013)
    Google Scholar
  117. M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979)
    Google Scholar
  118. R. Gillis, Determining the extreme ultraviolet constants of thoria by spectral ellipsometry, Bachelor thesis, Department of Physics and Astronomy, Brigham Young University, Provo, Utah, 2007
  119. M. Verlinde, et al., Phys. Rev. C 100, 024315 (2019)
    ADS Google Scholar
  120. R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. 2nd edn. (John Wiley & Sons, 1985)
  121. P. Cakir, et al., J. Phys. Chem. C 118, 24497 (2014)
    Google Scholar
  122. S.V. Fomichev, et al., Laser Phys. 12, 383 (2002)
    Google Scholar
  123. K.D. Moll, R.J. Jones, J. Ye, Opt. Express 14, 8189 (2006)
    ADS Google Scholar
  124. J. Wu, H. Zeng, Opt. Lett. 32, 3315 (2007)
    ADS Google Scholar
  125. D.W. Osborne, E.F. Westrum, J. Chem. Phys. 21, 1884 (1953)
    ADS Google Scholar
  126. Y. Zhang, D.Y. Tzou, J.K. Chen, in High-Power and Femtosecond Lasers: Properties, Materials and Applications, edited by P.H. Barret, M. Palmerm (Nova Science Publishers Inc, Hauppauge, NY, 2009), Vol. 5, pp. 159–206
  127. E.G. Gamaly, et al., Phys. Plasmas 9, 949 (2002)
    ADS Google Scholar
  128. M.S. Brown, C.B. Arnold, Interaction and application to multiscale surface modification, in Laser Precision Micro-Fabrication, edited by K. Sugioka (Springer-Verlag, Berlin, 2010)
  129. R.R. Goruganthu, W.G. Wilson, Rev. Sci. Instrum. 55, 2030 (1984)
    ADS Google Scholar
  130. D.A. Dahl, et al., Rev. Sci. Imstrum. 61, 607 (1990)
    ADS Google Scholar
  131. W.S. Boyle, G.E. Smith, Bell Syst. Tech. J. 49, 587 (1970)
    Google Scholar
  132. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012)
    ADS Google Scholar
  133. N. Wandkowsky, et al., New J. Phys. 15, 083040 (2013)
    ADS Google Scholar
  134. N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy (Chapman and Hall Ltd, London, 1971)
  135. O. Knop, E.M. Palmer, R.W. Robinson, Acta Crystallogr. Sect. E 31, 19 (1975)
    ADS Google Scholar
  136. N. Hershkowitz, C.G. Jacobs, K.A. Murphy, Phys. Lett. B 27, 563 (1968)
    ADS Google Scholar
  137. A. Forster, W. Potzel, G.M. Kalvius, Z. Phys, Z. Phys. B 37, 209 (1980)
    ADS Google Scholar
  138. G.K. Shenoy, Mössbauer-effect isomer shifts, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, edited by G.J. Long (Springer Science and Business Media, New York, 1984)
  139. H. Frauenfelder, The Mössbauer effect, in Frontiers in Physics, edited byD. Pines (W.A. Benjamin Inc., New York, 1962)
  140. T.C. Gibb, Principles of Mössbauer Spectroscopy (Chapman and Hall, London, New York, 1976)
  141. R.H. Dicke, Phys. Rev. 89, 472 (1953)
    ADS Google Scholar
  142. W.E. Lamb, Phys. Rev. 55, 190 (1939)
    ADS Google Scholar
  143. B.T.M. Willis, Proc. R. Soc. 274, 134 (1963)
    ADS Google Scholar
  144. M. Ali, P. Nagels, Phys. Status Solidi B 21, 113 (1967)
    ADS Google Scholar
  145. H. Serizawa, Y. Arai, Y. Suzuki, J. Nucl. Mater. 280, 99 (2000)
    ADS Google Scholar
  146. Y. Lu, Y. Yang, P. Zhang, J. Phys.: Condens. Matter 24, 225801 (2012)
    ADS Google Scholar
  147. T.D. Kelly, et al., Mater. Res. Soc. Symp. Proc. 1576, (2013)
  148. D.G. Rancourt, Hyperfine Interact. 117, 3 (1998)
    ADS Google Scholar
  149. T. Shigematsu, H.D. Pfannes, W. Keune, Phys. Rev. Lett. 45, 1206 (1980)
    ADS Google Scholar
  150. M.S. Safronova, et al., Phys. Rev. A 88, 060501 (2013)
    ADS Google Scholar
  151. K. Groot-Berning, et al., Phys. Rev. A 99, 023420 (2019)
    ADS Google Scholar
  152. S.G. Porsev, V.V. Flambaum, Phys. Rev. A 81, 032504 (2010)
    ADS Google Scholar
  153. R.A. Mueller, et al., Nucl. Instrum. Methods Phys. Res. B 408, 48 (2017)
    Google Scholar
  154. A. Messiah, Quantum Mechanics Volume II (North Holland Publishing Company, 1965)
  155. V.V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006)
    ADS Google Scholar

Download references