Hypothetical superparamagnetic magnetometer in a pigeon’s upper beak probably does not work (original) (raw)

Abstract

We reanalysed the role of superparamagnetic magnetite clusters observed in a pigeon’s upper beak to decide if this matter can be a component of some sort of pigeon magnetometer for Earth orientation. We investigated the mutual interaction of the magnetite clusters induced by the geomagnetic field. The force sensitivity of the hypothetical magnetometer in a pigeon’s upper beak was estimated considering the previously presented threshold magnetic sensitivity of pigeons, measured in electrophysiological and behavioural investigations. The typical intercluster magnetic force seems to be 10−19N well above the threshold magnetic sensitivity. To strengthen our results, we measured the magnetic susceptibility of superparamagnetic magnetite using a vibrating sample magnetometer. Finally we performed theoretical kinematic analysis of the motion of magnetite clusters in cell plasma. The results indicate that magnetite clusters, constituted by superparamagnetic nanoparticles and observed in a pigeon’s upper beak, may not be a component of a measuring system providing the magnetic map.

Graphical abstract

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. W. Wiltschko, R. Wiltschko, Science 176, 62 (1972).
    Article ADS Google Scholar
  2. W. Wiltschko, R. Wiltschko, J. Exp. Biol. 199, 29 (1996).
    Article Google Scholar
  3. C. Walcott, J. Exp. Biol. 199, 21 (1996).
    Google Scholar
  4. C.V. Mora et al., Nature 432, 508 (2004).
    Article ADS Google Scholar
  5. M.M. Walker et al., Nature 390, 371 (1997).
    Article ADS Google Scholar
  6. M. Winklhofer, J. R. Soc. Interface 7, S131 (2010).
    Article Google Scholar
  7. K.J. Lohmann, Nature 464, 1140 (2010).
    Article ADS Google Scholar
  8. L.J. Gould, Nature 296, 205 (1982).
    Article ADS Google Scholar
  9. J.L. Kirschvink, M. Winklhofer, M.M. Walker, J. R. Soc. Interface 7, S179 (2010).
    Article Google Scholar
  10. D. Faivre, D. Schuler, Chem. Rev. 108, 4875 (2008).
    Article Google Scholar
  11. W. Wiltschko, R. Wiltschko, J. Ornithol 148, S61 (2007).
    Article Google Scholar
  12. M. Hanzlik et al., Biometals 13, 325 (2000).
    Article Google Scholar
  13. G. Fleissner et al., J. Ornithol. 148, S643 (2007).
    Article Google Scholar
  14. G. Fleissner et al., J. Comp. Neurol. 458, 350 (2003).
    Article Google Scholar
  15. G. Fleissner et al., Naturwiss. 94, 631 (2007).
    Article ADS Google Scholar
  16. G. Falkenberg et al., Plos. One 5, (2010).
  17. R. Wiltschko et al., Curr. Biol. 20, 1534 (2010).
    Article Google Scholar
  18. R.C. Beason, P. Semm, J. Exp. Biol. 199, 1241 (1996).
    Google Scholar
  19. C.D. Treiber et al., Nature 484, 367 (2012).
    ADS Google Scholar
  20. M. Zapka et al., Nature 461, 1274 (2009).
    Article ADS Google Scholar
  21. T. Ritz et al., J. R. Soc. Interface 7, S135 (2010).
    Article Google Scholar
  22. R. Wiltschko et al., Human Front. Sci. Prog. J. 1, 41 (2007).
    Google Scholar
  23. S.H.K. Eder et al., Proc. Natl. Acad. Sci. U.S.A. 109, 12022 (2012).
    Article ADS Google Scholar
  24. V.P. Shcherbakov, M. Winklhofer, Phys. Rev. E 81, 031921 (2010).
    Article ADS Google Scholar
  25. M. Winklhofer, J.L. Kirschvink, arXiv:0805.2249vl (2008).
  26. I. Safarik, M. Safarikova, Monatsh. Chem. 133, 737 (2002).
    Article Google Scholar
  27. A.F. Davila et al., Phys. Chem. Earth 28, 647 (2003).
    Article Google Scholar
  28. V.P. Shcherbakov, M. Winklhofer, Eur. Biophys. J. 28, 380 (1999).
    Article Google Scholar
  29. I.A. Solov’yov, W. Greiner, Biophys. J. 93, 1493 (2007).
    Article ADS Google Scholar
  30. M. Winklhofer et al., Eur. J. Mineral. 13, 659 (2001).
    Article Google Scholar
  31. I.A. Solov’yov, W. Greiner, Phys. Rev. E 80, 1 (2009).
    Google Scholar
  32. I.A. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 161 (2009).
    Article ADS Google Scholar
  33. A.F. Davila et al., Biophys. J. 89, 56 (2005).
    Article ADS Google Scholar
  34. M. Winklhofer, J.L. Kirschvink, J. R. Soc. Interface 7, S273 (2010).
    Article Google Scholar
  35. H. Zhang, M. Widom, Phys. Rev. E 51, 2099 (1995).
    Article ADS Google Scholar
  36. H. Cadiou, P.A. McNaughton, J. R. Soc. Interface 7, S193 (2010).
    Article Google Scholar
  37. M. Korte, C.G. Constable, Earth Planet Sci. Lett. 236, 348 (2005).
    Article ADS Google Scholar
  38. A.C. Fraser-Smith, Rev. Geophys. 25, 1 (1987).
    Article ADS Google Scholar
  39. J.P. Ge et al., Angew. Chem. Int. Edit. 46, 4342 (2007).
    Article Google Scholar
  40. J.J. Abbott et al., IEEE T. Robot. 23, 1247 (2007).
    Article Google Scholar
  41. J.A. Osborn, Phys. Rev. 67, 351 (1945).
    Article ADS Google Scholar
  42. C.H. Ahn et al., J. Microelectromech. Syst. 5, 151 (1996).
    Article Google Scholar
  43. P. Poulin, V. Cabuil, D.A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).
    Article ADS Google Scholar
  44. K.W. Yung, P.B. Landecker, D.D. Villani, Magn. electr. Separ. 9, 39 (1998).
    Article Google Scholar
  45. G.P. Hatch, R.E. Stelter, J. Magn. & Magn. Mater. 225, 262 (2001).
    Article ADS Google Scholar
  46. R.C. Beason, Integr. Comp. Biol. 45, 565 (2005).
    Article Google Scholar
  47. M.M. Walker, T.E. Dennis, J.L. Kirschvink, Curr. Opin. Neurobiol. 12, 735 (2002).
    Article Google Scholar
  48. J.L. Gould, Curr. Biol. 20, R431 (2010).
    Article Google Scholar
  49. L.Q. Wu, J.D. Dickman, Science 336, 1054 (2012).
    Article ADS Google Scholar
  50. A.R. Muxworthy, W. Williams, J. R. Soc. Interface 6, 1207 (2009).
    Article Google Scholar
  51. C.T. Yavuz et al., Science 314, 964 (2006).
    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. Nanotechnology Centre and IT4Innovations Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70833, Ostrava, Czech Republic
    Petr Jandačka & Jaromír Pištora
  2. Institute of Physics, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70833, Ostrava, Czech Republic
    Petr Jandačka, Petr Alexa & Jana Trojková
  3. Institute of Clean Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70833, Ostrava, Czech Republic
    Petr Alexa

Authors

  1. Petr Jandačka
    You can also search for this author inPubMed Google Scholar
  2. Petr Alexa
    You can also search for this author inPubMed Google Scholar
  3. Jaromír Pištora
    You can also search for this author inPubMed Google Scholar
  4. Jana Trojková
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toPetr Jandačka.

Rights and permissions

About this article

Cite this article

Jandačka, P., Alexa, P., Pištora, J. et al. Hypothetical superparamagnetic magnetometer in a pigeon’s upper beak probably does not work.Eur. Phys. J. E 36, 40 (2013). https://doi.org/10.1140/epje/i2013-13040-1

Download citation

Keywords