Faster scaling algorithms for general graph matching problems (original) (raw)
Published: 01 October 1991 Publication History
References
[1]
AHO. A. V., HOPCROFT, J. E., AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
[2]
BALL, M. O., AND DERIGS, U. An analysis of alternative strategies for lmplementing matching algorithms. Networks 13, 4 (1983), 517-549.
[3]
BERTSEKAS, D.P. Distributed asynchronous relaxation methods for linear network flow problems, LIDS Report P-1606, M.I.T., Cambridge, Mass., 1986; preliminary version. In Proceeding of the 25th Conference on Decision and Control. IEEE, New York, December 1986.
[4]
CHRISTOFIDES, N. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon Univ., Pittsburgh, Pa., 1976.
[5]
CUNNINGHAM, W. H., AND MARSH, A. B. III. A primal algorithm for optimum matching. Math. Prog. Stud. 8 (1978), 50-72.
[6]
EDMONDS, J. Paths, trees and flowers. Canad. J. Math. 17 (1965), 449-467
[7]
EDMONDS, J. Maximum matching and a polyhedron with 0, t-vertices. J. Res. Nat. Bur. Standards 69B (1965), 125-130.
[8]
EDMONDS, J., AND KARP, R. M. Theoretical improvements m algorithmic efficiency for network flow problems. J. ACM 19, 0 (1972), 248-264.
[9]
GABOW, H.N. An efficient implementation of Edmonds' algorithm for maximum matching on graphs. J. ACM 23, 2 (1976), 221-234.
[10]
GABOW, H. N. Scaling algorithms for network problems. J. Comp. and System Sct., 31, 2 (1985), 148-168.
[11]
GABOW, H.N. A scaling algorithm for weighted matching on general graphs. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science. IEEE, New York, 1985, pp. 90-100.
[12]
GABOW, H.N. Duality and parallel algorithms for graph matching, manuscript.
[13]
GABOW, H. N. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the 1st Annual A CM-SIAM Symposium on Discrete Algorithms. ACM, New York, 1990, pp. 434-443.
[14]
GABOW, H. N., GAUL, Z., AND SPENCER, T.H. Efficient amplementation of graph algorithms using contraction. J. ACM 36, 3 (1989), 540-572.
[15]
GABOW, H. N., AND TARJAN, R. E. A linear-time algorithm for a special case of disjoint set union. J. Comp. and System Sci., 30, 2 (I985), 209-221.
[16]
GABOW, H. N., AND TARJAN, R.E. Algorithms for two bottleneck optimization problems. J. Algorithms, 9, 3 (1988), 411-417.
[17]
GABOW, H. N., AND T~,RJAN, R.E. Faster scaling algorithms tbr network problems. SIAM J. Comput., 18, 5 (1989), 1013-1036.
[18]
GALIL, Z., MICALI, S., ~ND GABOW, H.N. An O(EV log V) algorithm for finding a maxmml weighted matching in general graphs. SIAM J. Comput., 15, 1 (1986), 120-130.
[19]
GOLf)BERG, A. V. Efficient graph algorithms for sequenual and parallel computers. Ph. D. Dissertation, Dept. of Electrical Eng. and Comp. Scl., MIT, Techmcal Rep. MIT/LCS/TR-374, Cambridge, Mass., 1987.
[20]
GOLDBERG, A. V., a, ND TARJAN, R E, Finding minimum-cost circulations by successwe approximation. Math. of Oper. Res., 15, 3 (1990), 430-466.
[21]
HOPCROFT, J., AND KARP, R. An n5'~ algorithm tbr maximum matchings in bipartite graphs, SIAM J. Comput., 2, 4 (1973), 225-231.
[22]
LAWLER, E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York, 1976.
[23]
Low(sz, L., AND PLUYIM~R, M.D. Matching Theory North-Holland Mathematical Studies 121, Annals of Discrete Mathematics 29, North-Holland, New York, 1986.
[24]
MICAL., S., AND V~ZIRAN~, V V. An O( V/{ V} " I El) algorithm for finding maximum matching m general graphs. In Proceedings of the 21st Annual Symposium on the Foundations of Computer Science. IEEE, New York, 1980, pp. I7-27.
[25]
PAPADIMITRI~)U, C. H., AND STE1GLITZ, K. Combinatorial Optimization: Algorithms and Complexlty. Prentice-Hall, Inc, Englcwood Cliffs, N.J., 1982.
[26]
TARDOS, E. A strongly polynomial minimum cost circulation algorithm. Combinatortca 5, 3 (1985), 247- 255.
[27]
TARJAN, R. E. Applications of path compression on balanced trees. J. A CM 26, 4 (1979), 690-715.
[28]
TARJAN, R.E. Data Structures and Network Algorithms. SIAM Monograph, Philadelphia, Pa., 1983.
[29]
V AIDYA, P. M. Geometry helps in matching In Proceeding of the 20th Annual A CM Symposium on Theory of Computing. ACM, New York, 1988, pp 422-425.
[30]
Wr.:BER, G.M. Sensitwaty analysis of optimal match~ngs, Networks 11 (1981), 41-56.
Information & Contributors
Information
Published In
Journal of the ACM Volume 38, Issue 4
Oct. 1991
272 pages
Copyright © 1991 ACM.
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Published: 01 October 1991
Published in JACM Volume 38, Issue 4
Permissions
Request permissions for this article.
Check for updates
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- View Citations
- Downloads (Last 12 months)194
- Downloads (Last 6 weeks)29
Reflects downloads up to 09 Jan 2025
Other Metrics
Citations
- Hassan AWallace MMoser IHarabor D(2024)Snapshot-Optimal Real-Time Ride SharingInformation10.3390/info1504017415:4(174)Online publication date: 22-Mar-2024
- Vazirani V(2024)A Theory of Alternating Paths and Blossoms from the Perspective of Minimum LengthMathematics of Operations Research10.1287/moor.2020.038849:3(2009-2047)Online publication date: 1-Aug-2024
- Schwing GGrosu DSchwiebert L(2024)Parallel Maximum Cardinality Matching for General Graphs on GPUs2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)10.1109/IPDPSW63119.2024.00157(880-889)Online publication date: 27-May-2024
- Schwing GGrosu DSchwiebert L(2024)Shared-Memory Parallel Edmonds Blossom Algorithm for Maximum Cardinality Matching in General Graphs2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)10.1109/IPDPSW63119.2024.00107(530-539)Online publication date: 27-May-2024
- Benerecetti MDell'Erba DMogavero F(2024)Solving mean-payoff games via quasi dominionsInformation and Computation10.1016/j.ic.2024.105151297(105151)Online publication date: Mar-2024
- Fomin FGolovach PJaffke LPhilip GSagunov D(2024)Diverse Pairs of MatchingsAlgorithmica10.1007/s00453-024-01214-786:6(2026-2040)Online publication date: 1-Jun-2024
- Richer MKim TAyers P(2024)Graphical Approach to Interpreting and Efficiently Evaluating Geminal WavefunctionsInternational Journal of Quantum Chemistry10.1002/qua.70000125:1Online publication date: 20-Dec-2024
- Gattani ARaghvendra SShirzadian POh ANaumann TGloberson ASaenko KHardt MLevine S(2023)A robust exact algorithm for the euclidean bipartite matching problemProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668374(51706-51718)Online publication date: 10-Dec-2023
- Huang SSu HOshman RNolin AHalldorsson MBalliu A(2023)(1-ϵ)-Approximate Maximum Weighted Matching in poly(1/ϵ, log n) Time in the Distributed and Parallel SettingsProceedings of the 2023 ACM Symposium on Principles of Distributed Computing10.1145/3583668.3594570(44-54)Online publication date: 19-Jun-2023
- Gabow H(2023)A Weight-Scaling Algorithm for f-Factors of MultigraphsAlgorithmica10.1007/s00453-023-01127-x85:10(3214-3289)Online publication date: 18-May-2023
- Show More Cited By
View Options
View options
View or Download as a PDF file.
eReader
View online with eReader.
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Full Access
Media
Figures
Other
Tables
Affiliations
Harold N. Gabow
Univ. of Colorado, Boulder
Robert E. Tarjan
Princeton Univ., Princeton, NJ