Faster scaling algorithms for general graph matching problems (original) (raw)

Authors Info & Claims

Published: 01 October 1991 Publication History

First page of PDF

References

[1]

AHO. A. V., HOPCROFT, J. E., AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2]

BALL, M. O., AND DERIGS, U. An analysis of alternative strategies for lmplementing matching algorithms. Networks 13, 4 (1983), 517-549.

[3]

BERTSEKAS, D.P. Distributed asynchronous relaxation methods for linear network flow problems, LIDS Report P-1606, M.I.T., Cambridge, Mass., 1986; preliminary version. In Proceeding of the 25th Conference on Decision and Control. IEEE, New York, December 1986.

[4]

CHRISTOFIDES, N. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon Univ., Pittsburgh, Pa., 1976.

[5]

CUNNINGHAM, W. H., AND MARSH, A. B. III. A primal algorithm for optimum matching. Math. Prog. Stud. 8 (1978), 50-72.

[6]

EDMONDS, J. Paths, trees and flowers. Canad. J. Math. 17 (1965), 449-467

[7]

EDMONDS, J. Maximum matching and a polyhedron with 0, t-vertices. J. Res. Nat. Bur. Standards 69B (1965), 125-130.

[8]

EDMONDS, J., AND KARP, R. M. Theoretical improvements m algorithmic efficiency for network flow problems. J. ACM 19, 0 (1972), 248-264.

[9]

GABOW, H.N. An efficient implementation of Edmonds' algorithm for maximum matching on graphs. J. ACM 23, 2 (1976), 221-234.

[10]

GABOW, H. N. Scaling algorithms for network problems. J. Comp. and System Sct., 31, 2 (1985), 148-168.

[11]

GABOW, H.N. A scaling algorithm for weighted matching on general graphs. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science. IEEE, New York, 1985, pp. 90-100.

[12]

GABOW, H.N. Duality and parallel algorithms for graph matching, manuscript.

[13]

GABOW, H. N. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the 1st Annual A CM-SIAM Symposium on Discrete Algorithms. ACM, New York, 1990, pp. 434-443.

[14]

GABOW, H. N., GAUL, Z., AND SPENCER, T.H. Efficient amplementation of graph algorithms using contraction. J. ACM 36, 3 (1989), 540-572.

[15]

GABOW, H. N., AND TARJAN, R. E. A linear-time algorithm for a special case of disjoint set union. J. Comp. and System Sci., 30, 2 (I985), 209-221.

[16]

GABOW, H. N., AND TARJAN, R.E. Algorithms for two bottleneck optimization problems. J. Algorithms, 9, 3 (1988), 411-417.

[17]

GABOW, H. N., AND T~,RJAN, R.E. Faster scaling algorithms tbr network problems. SIAM J. Comput., 18, 5 (1989), 1013-1036.

[18]

GALIL, Z., MICALI, S., ~ND GABOW, H.N. An O(EV log V) algorithm for finding a maxmml weighted matching in general graphs. SIAM J. Comput., 15, 1 (1986), 120-130.

[19]

GOLf)BERG, A. V. Efficient graph algorithms for sequenual and parallel computers. Ph. D. Dissertation, Dept. of Electrical Eng. and Comp. Scl., MIT, Techmcal Rep. MIT/LCS/TR-374, Cambridge, Mass., 1987.

[20]

GOLDBERG, A. V., a, ND TARJAN, R E, Finding minimum-cost circulations by successwe approximation. Math. of Oper. Res., 15, 3 (1990), 430-466.

[21]

HOPCROFT, J., AND KARP, R. An n5'~ algorithm tbr maximum matchings in bipartite graphs, SIAM J. Comput., 2, 4 (1973), 225-231.

[22]

LAWLER, E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York, 1976.

[23]

Low(sz, L., AND PLUYIM~R, M.D. Matching Theory North-Holland Mathematical Studies 121, Annals of Discrete Mathematics 29, North-Holland, New York, 1986.

[24]

MICAL., S., AND V~ZIRAN~, V V. An O( V/{ V} " I El) algorithm for finding maximum matching m general graphs. In Proceedings of the 21st Annual Symposium on the Foundations of Computer Science. IEEE, New York, 1980, pp. I7-27.

[25]

PAPADIMITRI~)U, C. H., AND STE1GLITZ, K. Combinatorial Optimization: Algorithms and Complexlty. Prentice-Hall, Inc, Englcwood Cliffs, N.J., 1982.

[26]

TARDOS, E. A strongly polynomial minimum cost circulation algorithm. Combinatortca 5, 3 (1985), 247- 255.

[27]

TARJAN, R. E. Applications of path compression on balanced trees. J. A CM 26, 4 (1979), 690-715.

[28]

TARJAN, R.E. Data Structures and Network Algorithms. SIAM Monograph, Philadelphia, Pa., 1983.

[29]

V AIDYA, P. M. Geometry helps in matching In Proceeding of the 20th Annual A CM Symposium on Theory of Computing. ACM, New York, 1988, pp 422-425.

[30]

Wr.:BER, G.M. Sensitwaty analysis of optimal match~ngs, Networks 11 (1981), 41-56.

Information & Contributors

Information

Published In

cover image Journal of the ACM

Journal of the ACM Volume 38, Issue 4

Oct. 1991

272 pages

Copyright © 1991 ACM.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 1991

Published in JACM Volume 38, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. augmenting path
  2. blossoms matching
  3. network optimisation
  4. scaling

Qualifiers

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

Media

Figures

Other

Tables

Affiliations

Harold N. Gabow

Univ. of Colorado, Boulder

Robert E. Tarjan

Princeton Univ., Princeton, NJ