Testing Unconstrained Optimization Software (original) (raw)

Authors Info & Claims

Published: 01 March 1981 Publication History

First page of PDF

References

[1]

BARD, Y. Comparison of gradient methods for the solution of nonlinear parameter estnnation problems SIAM J. Numer. Anal. 7 (1970), 157-186.

[2]

BEALE, E.M.L. On an iterative method of finding a local mmnnum of a function of more than one variable. Tech. Rep. No. 25, Statistical Techniques Research Group, Princeton Umv., Princeton, N.J., 1958.

[3]

BIGGS, M.C. Minimization algorithms making use of non-quadratic properties of the obJective function. J Inst. Math Appl 8 (1971), 315-327.

[4]

Box, M.J. A comparison of several current optimization methods, and the use of transformations in constrained problems. Comput. J 9 (1966), 67-77.

[5]

BRowN, K.M. A quadratically convergent Newton-hke method based upon Gausslan elmunation. SIAM J. Numer. Anal. 6 (1969), 560-569.

[6]

BROWN, K.M., ASD DENNIS, J.E. New computational algorithms for minimizing a sum of squares of nonhnear functions. Rep. No. 71-6, Yale Univ, Dep. Comput. Science, New Haven, Conn., March 1971.

[7]

BROYDEN, C.G. A class of methods for solving nonlinear simultaneous equations. Math Comput 19 (1965), 577-593.

[8]

BROYDEN, C.G. The convergence of an algorithm for solving sparse nonlinear systems. Math. Comput. 25 (1971), 285-294.

[9]

COLVILLE, A.R. A comparative study of nonlinear programming codes. Rep. 320-2949, IBM New York Scientific Center, 1968.

[10]

Cox, R A. Comparison of the performance of seven optimization algorithms on twelve unconstrained optimization problems. Ref. 1335CNO4, Gulf Research and Development Company, Pittsburg, Jan. 1969.

[11]

FLETCHER, R. Function minimization without evaluating derlvatlves--A review. Comput. J. 8 (1965), 33-41.

[12]

FLETCHER, R., AND POWELL, M.J.D. A rapidly convergent descent method for minn-nizatlon Comput. J. 6 (1963), 163-168.

[13]

FREUDENSTEIN, F., AND ROTH, B. Numerical solutions of systems of nonlinear equations. J ACM 10, 4 (Oct. 1963), 550-556.

[14]

GILL, P E, MURRAY W, AND PITFIELD, R.A. The nnplementation of two revised quas~-Newton algorithms for unconstrained optnmzatlon. Rep. NAC 11, National Phys. Lab., April 1972, pp. 82- 83.

[15]

HILLSTROM, K.E. A snnulaUon test approach to the evaluation of nonhnear opt~rmzatlon algorithms. A CM Trans. Math. Softw. 3, 4 (1977), 305-315.

[16]

JENNRICH, R.I., AND SAMPSON, P.F. Application of stepwise regression to nonlinear estimation. Technometrtcs 10 (1968), 63-72.

[17]

KOWALIK, J S, AND OSBORNE, M.R Methods for Unconstramed Optimtzatton Problems. Elsevier North-Holland, New York, 1968

[18]

MEYER, R.R. Theoretical and computational aspects of nonlinear regression. In Nonlinear Programmmg, J. B. Rosen, O. L. Mangasanan, and K. Rltter (Eds), Academic Press, New York, 1970, pp. 465-486.

[19]

MOR~, J J. The Levenberg-Marquardt algorithm. Implementation and theory In Numertcal Analysts, G. A. Watson (Ed.), Lecture Notes tn Mathemattcs 630, Sprmger-Verlag, New York, 1977, pp. 105-116.

[20]

MOR}~, J.J., AND COSNARD, M.Y. Numerical solution of nonlinear equations. ACM Trans. Math. Softw 5, 1 (March 1979), 64-85.

[21]

OSBORNE, M.R. Some aspects of nonlinear least squares calculations. In Numerical Methods for Nonhnear Optimization, F. A. Lootsma (Ed), Academic Press, New York, 1972, pp 171-189.

[22]

POWELL, M.J.D. A hybrid method for nonlinear equations. In Numer~calMethods for Nonlinear Algebraic Equations, P. Rabinowitz (Ed), Gordon & Breach, New York, 1970, pp. 87-114

[23]

POWELL, M.J.D. An iterative method for finding stationary values of a function of several variables. Comput. J. 5 (1962), 147-151.

[24]

ROSENBROCK, H.H. An automatic method for finding the greatest or least value of a function. Comput. J. 3 (1960), 175-184.

[25]

SPEDICATO, E. Computational experience with quasi-Newton algorithms for minimization problems of moderately large size Rep. CISE-N-175, Segrate (Milano), 1975.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software

ACM Transactions on Mathematical Software Volume 7, Issue 1

March 1981

146 pages

Copyright © 1981 ACM.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 1981

Published in TOMS Volume 7, Issue 1

Permissions

Request permissions for this article.

Check for updates

Qualifiers

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

Reflects downloads up to 17 Nov 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

Media

Figures

Other

Tables

Affiliations

Purdue Univ., West Lafayette, IN

Jorge J. Moré

Argonne National Labortory, 9700 South Cass Avenue, Argonne, IL

Burton S. Garbow

Argonne National Labortory, 9700 South Cass Avenue, Argonne, IL

Kenneth E. Hillstrom

Argonne National Labortory, 9700 South Cass Avenue, Argonne, IL