Testing Unconstrained Optimization Software (original) (raw)
Published: 01 March 1981 Publication History
References
[1]
BARD, Y. Comparison of gradient methods for the solution of nonlinear parameter estnnation problems SIAM J. Numer. Anal. 7 (1970), 157-186.
[2]
BEALE, E.M.L. On an iterative method of finding a local mmnnum of a function of more than one variable. Tech. Rep. No. 25, Statistical Techniques Research Group, Princeton Umv., Princeton, N.J., 1958.
[3]
BIGGS, M.C. Minimization algorithms making use of non-quadratic properties of the obJective function. J Inst. Math Appl 8 (1971), 315-327.
[4]
Box, M.J. A comparison of several current optimization methods, and the use of transformations in constrained problems. Comput. J 9 (1966), 67-77.
[5]
BRowN, K.M. A quadratically convergent Newton-hke method based upon Gausslan elmunation. SIAM J. Numer. Anal. 6 (1969), 560-569.
[6]
BROWN, K.M., ASD DENNIS, J.E. New computational algorithms for minimizing a sum of squares of nonhnear functions. Rep. No. 71-6, Yale Univ, Dep. Comput. Science, New Haven, Conn., March 1971.
[7]
BROYDEN, C.G. A class of methods for solving nonlinear simultaneous equations. Math Comput 19 (1965), 577-593.
[8]
BROYDEN, C.G. The convergence of an algorithm for solving sparse nonlinear systems. Math. Comput. 25 (1971), 285-294.
[9]
COLVILLE, A.R. A comparative study of nonlinear programming codes. Rep. 320-2949, IBM New York Scientific Center, 1968.
[10]
Cox, R A. Comparison of the performance of seven optimization algorithms on twelve unconstrained optimization problems. Ref. 1335CNO4, Gulf Research and Development Company, Pittsburg, Jan. 1969.
[11]
FLETCHER, R. Function minimization without evaluating derlvatlves--A review. Comput. J. 8 (1965), 33-41.
[12]
FLETCHER, R., AND POWELL, M.J.D. A rapidly convergent descent method for minn-nizatlon Comput. J. 6 (1963), 163-168.
[13]
FREUDENSTEIN, F., AND ROTH, B. Numerical solutions of systems of nonlinear equations. J ACM 10, 4 (Oct. 1963), 550-556.
[14]
GILL, P E, MURRAY W, AND PITFIELD, R.A. The nnplementation of two revised quas~-Newton algorithms for unconstrained optnmzatlon. Rep. NAC 11, National Phys. Lab., April 1972, pp. 82- 83.
[15]
HILLSTROM, K.E. A snnulaUon test approach to the evaluation of nonhnear opt~rmzatlon algorithms. A CM Trans. Math. Softw. 3, 4 (1977), 305-315.
[16]
JENNRICH, R.I., AND SAMPSON, P.F. Application of stepwise regression to nonlinear estimation. Technometrtcs 10 (1968), 63-72.
[17]
KOWALIK, J S, AND OSBORNE, M.R Methods for Unconstramed Optimtzatton Problems. Elsevier North-Holland, New York, 1968
[18]
MEYER, R.R. Theoretical and computational aspects of nonlinear regression. In Nonlinear Programmmg, J. B. Rosen, O. L. Mangasanan, and K. Rltter (Eds), Academic Press, New York, 1970, pp. 465-486.
[19]
MOR~, J J. The Levenberg-Marquardt algorithm. Implementation and theory In Numertcal Analysts, G. A. Watson (Ed.), Lecture Notes tn Mathemattcs 630, Sprmger-Verlag, New York, 1977, pp. 105-116.
[20]
MOR}~, J.J., AND COSNARD, M.Y. Numerical solution of nonlinear equations. ACM Trans. Math. Softw 5, 1 (March 1979), 64-85.
[21]
OSBORNE, M.R. Some aspects of nonlinear least squares calculations. In Numerical Methods for Nonhnear Optimization, F. A. Lootsma (Ed), Academic Press, New York, 1972, pp 171-189.
[22]
POWELL, M.J.D. A hybrid method for nonlinear equations. In Numer~calMethods for Nonlinear Algebraic Equations, P. Rabinowitz (Ed), Gordon & Breach, New York, 1970, pp. 87-114
[23]
POWELL, M.J.D. An iterative method for finding stationary values of a function of several variables. Comput. J. 5 (1962), 147-151.
[24]
ROSENBROCK, H.H. An automatic method for finding the greatest or least value of a function. Comput. J. 3 (1960), 175-184.
[25]
SPEDICATO, E. Computational experience with quasi-Newton algorithms for minimization problems of moderately large size Rep. CISE-N-175, Segrate (Milano), 1975.
Information & Contributors
Information
Published In
ACM Transactions on Mathematical Software Volume 7, Issue 1
March 1981
146 pages
Copyright © 1981 ACM.
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Published: 01 March 1981
Published in TOMS Volume 7, Issue 1
Permissions
Request permissions for this article.
Check for updates
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- View Citations
- Downloads (Last 12 months)994
- Downloads (Last 6 weeks)178
Reflects downloads up to 17 Nov 2024
Other Metrics
Citations
- Jian JJin JMa G(2025)An IDFPM-based algorithm without Lipschitz continuity to constrained nonlinear equations for sparse signal and blurred image restoration problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2024.116234456(116234)Online publication date: Mar-2025
- Ishak MMarjugi S(2024)A New Hybrid Three-Term LS-CD Conjugate Gradient In Solving Unconstrained Optimization ProblemsMalaysian Journal of Mathematical Sciences10.47836/mjms.18.1.1018:1(167-184)Online publication date: 27-Mar-2024
- Lv YXing LBao WLi WGuo Z(2024)A class of pseudoinverse-free greedy block nonlinear Kaczmarz methods for nonlinear systems of equationsNetworks and Heterogeneous Media10.3934/nhm.202401419:1(305-323)Online publication date: 2024
- Cheng YGao J(2024)An efficient augmented memoryless quasi-Newton method for solving large-scale unconstrained optimization problemsAIMS Mathematics10.3934/math.202412319:9(25232-25252)Online publication date: 2024
- Zhu DYang YCao M(2024)An accelerated adaptive two-step Levenberg–Marquardt method with the modified Metropolis criterionAIMS Mathematics10.3934/math.202411999:9(24610-24635)Online publication date: 2024
- Han YRui S(2024)A New Adaptive Levenberg–Marquardt Method for Nonlinear Equations and Its Convergence Rate under the Hölderian Local Error Bound ConditionSymmetry10.3390/sym1606067416:6(674)Online publication date: 30-May-2024
- Moghrabi IHassan B(2024)An Efficient Limited Memory Multi-Step Quasi-Newton MethodMathematics10.3390/math1205076812:5(768)Online publication date: 4-Mar-2024
- Silva BLopes LMendonça F(2024)Parallel GPU-Acceleration of Metaphorless Optimization Algorithms: Application for Solving Large-Scale Nonlinear Equation SystemsApplied Sciences10.3390/app1412534914:12(5349)Online publication date: 20-Jun-2024
- Yunus RZainuddin NDaud HKannan RMuhammad Yahaya MAriffin Abdul Karim S(2024)New CG-Based Algorithms With Second-Order Curvature Information for NLS Problems and a 4DOF Arm Robot ModelIEEE Access10.1109/ACCESS.2024.339355512(61086-61103)Online publication date: 2024
- Akbari FHashemi A(2024)On Saturation of Zero-Dimensional IdealsExperimental Mathematics10.1080/10586458.2024.2423179(1-12)Online publication date: 13-Nov-2024
- Show More Cited By
View Options
View options
View or Download as a PDF file.
eReader
View online with eReader.
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Full Access
Media
Figures
Other
Tables
Affiliations
Purdue Univ., West Lafayette, IN
Jorge J. Moré
Argonne National Labortory, 9700 South Cass Avenue, Argonne, IL
Burton S. Garbow
Argonne National Labortory, 9700 South Cass Avenue, Argonne, IL
Kenneth E. Hillstrom
Argonne National Labortory, 9700 South Cass Avenue, Argonne, IL