Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate genome evolution (original) (raw)

Skip Nav Destination

Article navigation

Issue Cover

Research Articles| November 12 2004

J. Wienberg

Institute of Human Genetics, GSF National Research Center for Environment and Health, and Institute for Anthropology and Human Genetics, Department Biology II, Ludwig Maximilian University, Munich (Germany)

Search for other works by this author on:

Cytogenet Genome Res (2005) 108 (1-3): 139–160.

Article history

Received:

February 07 2004

Published Online:

November 12 2004

Content Tools

Abstract

For the last 15 years molecular cytogenetic techniques have been extensively used to study primate evolution. Molecular probes were helpful to distinguish mammalian chromosomes and chromosome segments on the basis of their DNA content rather than solely on morphological features such as banding patterns. Various landmark rearrangements have been identified for most of the nodes in primate phylogeny while chromosome banding still provides helpful reference maps. Fluorescence in situ hybridization (FISH) techniques were used with probes of different complexity including chromosome painting probes, probes derived from chromosome sub-regions and in the size of a single gene. Since more recently, in silico techniques have been applied to trace down evolutionarily derived chromosome rearrangements by searching the human and mouse genome sequence databases. More detailed breakpoint analyses of chromosome rearrangements that occurred during higher primate evolution also gave some insights into the molecular changes in chromosome rearrangements that occurred in evolution. Hardly any “fusion genes” as known from chromosome rearrangements in cancer cells or dramatic “position effects” of genes transferred to new sites in primate genomes have been reported yet. Most breakpoint regions have been identified within gene poor areas rich in repetitive elements and/or low copy repeats (segmental duplications). The progress in various molecular and molecular-cytogenetic approaches including the recently launched chimpanzee genome project suggests that these new tools will have a significant impact on the further understanding of human genome evolution.

References

Alexandrov I, Kazakov A, Tumeneva I, Shepelev V, Yurov Y: Alpha-satellite DNA of primates: old and new families. Chromosoma 110:253–266 (2001).

Amor DJ, Choo KH: Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714 (2002).

Antonacci R, Marzella R, Finelli P, Lonoce A, Forabosco A, Archidiacono N, Rocchi M: A panel of subchromosomal painting libraries representing over 300 regions of the human genome. Cytogenet Cell Genet 68:25–32 (1995).

Apiou F, Rumpler Y, Warter S, Vezuli A, Dutrillaux B: Demonstration of homoeologies between human and lemur chromosomes by chromosome painting. Cytogenet Cell Genet 72:50–52 (1996).

Arnold N, Wienberg J, Ermert K, Zachau HG: Comparative mapping of DNA probes derived from the V kappa immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization. Genomics 26:147–150 (1995).

Arnold N, Stanyon R, Jauch A, O’Brien P, Wienberg J: Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting. Cytogenet Cell Genet 74:80–85 (1996).

Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M: Evidence for an ancestral alphoid domain on the long arm of human chromosome 2. Hum Genet 89:247–249 (1992).

Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE: Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11:1005–1017 (2001).

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE: Recent segmental duplications in the human genome. Science 297:1003–1007 (2002).

Baldini A, Miller DA, Shridhar V, Rocchi M, Miller OJ, Ward DC: Comparative mapping of a gorilla-derived alpha satellite DNA clone on great ape and human chromosomes. Chromosoma 101:109–114 (1991).

Band MR, Larson JH, Rebeiz M, Green CA, Heyen DW, Donovan J, Windish R, Steining C, Mahyuddin P, Womack JE, Lewin HA: An ordered comparative map of the cattle and human genomes. Genome Res 10:1359–1368 (2000).

Barros RM, Nagamachi CY, Pieczarka JC, Rodrigues LR, Neusser M, de Oliveira EH, Wienberg J, Muniz JA, Rissino JD, Muller S: Chromosomal studies in Callicebus donacophilus pallescens, with classic and molecular cytogenetic approaches: multicolour FISH using human and Saguinus oedipus painting probes. Chromosome Res 11:327–334 (2003).

Best RG, Diamond D, Crawford E, Grass FS, Janish C, Lear TL, Soenksen D, Szalay AA, Moore CM: Baboon/human homologies examined by spectral karyotyping (SKY): a visual comparison. Cytogenet Cell Genet 82:83–87 (1998).

Bigoni F, Koehler U, Stanyon R, Ishida T, Wienberg J: Fluorescence in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Am J Phys Anthropol 102:315–327 (1997a).

Bigoni F, Stanyon R, Koehler U, Morescalchi AM, Wienberg J: Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization. Am J Primatol 42:289–298 (1997b).

Bigoni F, Stanyon R, Wimmer R, Schempp W: Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian Colobines. Am J Primatol 60:85–93 (2003).

Bigoni F, Houck ML, Ryder OA, Wienberg J, Stanyon R: Chromosome painting shows that Pygathrix nemaeus has the most basal karyotype among Asian Colobinae. Int J Primatol 25:679–688 (2004).

Canavez F, Alves G, Fanning TG, Seuánez HN: Comparative karyology and evolution of the Amazonian Callithrix (Platyrrhini, Primates). Chromosoma 104:348–357 (1996).

Cardone MF, Ventura M, Tempesta S, Rocchi M, Archidiacono N: Analysis of chromosome conservation in Lemur catta studied by chromosome paints and BAC/PAC probes. Chromosoma 111:348–356 (2002).

Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen XN, Furey TS, Kim UJ, et al: Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409:953–958 (2001).

Clemente IC, Ponsa M, Garcia M, Egozcue J: Evolution of the Simiiformes and the phylogeny of human chromosomes. Hum Genet 84:493–506 (1990).

Consigliere S, Stanyon R, Koehler U, Agoramoorthy G, Wienberg J: Chromosome painting defines genomic rearrangements between red howler monkey subspecies. Chromosome Res 4:264–270 (1996).

Consigliere S, Stanyon R, Koehler U, Arnold N, Wienberg J: In situ hybridization (FISH) maps chromosomal homologies between Alouatta belzebul (Platyrrhini, Cebidae) and other primates and reveals extensive interchromosomal rearrangements between howler monkey genomes. Am J Primatol 46:119–133 (1998).

Couturier J, Lernould JM: Karyotypic study of four gibbon forms provisionally considered as subspecies of Hylobates (Nomascus) concolor (Primates, Hylobatidae). Folia Primatol 56:95–104 (1991).

Couturier J, Dutrillaux B, Turleau C, de Grouchy J: [Comparative karyotyping of our gibbon species or subspecies (author’s transl)]. Ann Genet 25:5–10 (1982).

de Boer LEM: Cytotaxonomy of the Lorisoidea (Primates; Prosimii). I. Chromosome studies and karyological relationships in the Galagidae. Genetica 44:155–193 (1973).

de Oliveira EH, Neusser M, Figueiredo WB, Nagamachi C, Pieczarka JC, Sbalqueiro IJ, Wienberg J, Müller S: The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 10:669–683 (2002).

de Pontbriand A, Wang XP, Cavaloc Y, Mattei MG, Galibert F: Synteny comparison between apes and human using fine-mapping of the genome. Genomics 80:395–401 (2002).

Dear PH, Cook PR: Happy mapping: a proposal for linkage mapping the human genome. Nucleic Acids Res 17:6795–6807 (1989).

Dennehey BK, Gutches DG, McConkey EH, Krauter KS: Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. Genomics 83:493–501 (2004).

DeSilva U, Massa H, Trask BJ, Green ED: Comparative mapping of the region of human chromosome 7 deleted in Williams syndrome. Genome Res 9:428–436 (1999).

Dutrillaux B: Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (prosimian) to man. Hum Genet 48:251–314 (1979).

Dutrillaux B, Rumpler Y: Absence of chromosomal similarities between tarsiers (Tarsius syrichta) and other primates. Folia Primatol 50:130–133 (1988).

Dutrillaux B, Rethore MO, Aurias A, Goustard M: [Karyotype analysis of 2 species of gibbons (Hylobates lar and H. concolor) with different banding species]. Cytogenet Cell Genet 15:81–91 (1975).

Dutrillaux B, Couturier J, Warter S, Rumpler Y: Chromosomal evolution in “lemurs”. VI. Chromosomal banding studies of Galago senegalensis, Galago alleni, Galago demidovii and Euoticus elegantulus. Folia Primatol 37:280–296 (1982).

Dutrillaux B, Couturier J, Sabatier L, Muleris M, Prieur M: Inversions in evolution of man and closely related species. Ann Genet 29:195–202 (1986).

Eder V, Ventura M, Ianigro M, Teti M, Rocchi M, Archidiacono N: Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20:1506–1512 (2003).

Eichler EE: Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet 17:661–669 (2001).

Eichler EE, DeJong PJ: Biomedical applications and studies of molecular evolution: a proposal for a primate genomic library resource. Genome Res 12:673–678 (2002).

Eichler EE, Sankoff D: Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797 (2003).

Eichler EE, Johnson ME, Alkan C, Tuzun E, Sahinalp C, Misceo D, Archidiacono N, Rocchi M: Divergent origins and concerted expansion of two segmental duplications on chromosome 16. J Hered 92:462–468 (2001).

Fan Y, Linardopoulou E, Friedman C, Williams E, Trask BJ: Genomic structure and evolution of the ancestral chromosome fusion site in 2q13-2q14.1 and paralogous regions on other human chromosomes. Genome Res 12:1651–1662 (2002a).

Fan Y, Newman T, Linardopoulou E, Trask BJ: Gene content and function of the ancestral chromosome fusion site in human chromosome 2q13-2q14.1 and paralogous regions. Genome Res 12:1663–1672 (2002b).

Ferguson-Smith MA: Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5:253–265 (1997).

Finelli P, Stanyon R, Plesker R, Ferguson-Smith MA, O’Brien PC, Wienberg J: Reciprocal chromosome painting shows that the great difference in diploid number between human and African green monkey is mostly due to non-Robertsonian fissions. Mamm Genome 10:713–718 (1999).

Fleagle JG: Primate Adaption and Evolution (Academic Press, San Diego 1988).

Ford SM: Systematics of the New World Monkeys (Alan R Liss, New York 1986).

Froenicke L, Wienberg J, Stone G, Adams L, Stanyon R: Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting. Proc R Soc Lond B Biol Sci 270:1331–1340 (2003).

Fujiyama A, Watanabe H, Toyoda A, Taylor TD, Itoh T, Tsai SF, Park HS, Yaspo ML, Lehrach H, Chen Z, Fu G, Saitou N, Osoegawa K, de Jong PJ, Suto Y, Hattori M, Sakaki Y: Construction and analysis of a human-chimpanzee comparative clone map. Science 295:131–134 (2002).

Garcia F, Nogues C, Ponsa M, Ruiz-Herrera A, Egozcue J, Garcia Caldes M: Chromosomal homologies between humans and Cebus apella (Primates) revealed by ZOO-FISH. Mamm Genome 11:399–401 (2000).

Garcia F, Ruiz-Herrera A, Egozcue J, Ponsa M, Garcia M: Chromosomal homologies between Cebus and Ateles (primates) based on ZOO-FISH and G-banding comparisons. Am J Primatol 57:177–188 (2002).

Goureau A, Garrigues A, Tosser-Klopp G, Lahbib-Mansais Y, Chardon P, Yerle M: Conserved synteny and gene order difference between human chromosome 12 and pig chromosome 5. Cytogenet Cell Genet 94:49–54 (2001).

Gray JW, Dean PN, Fuscoe JC, Peters DC, Trask BJ, van den Engh GJ, Van Dilla MA: High-speed chromosome sorting. Science 238:323–329 (1987).

Gribble SM, Fiegler H, Burford DC, Prigmore E, Yang F, Carr P, Ng BL, Sun T, Kamberov ES, Makarov VL, Langmore JP, Carter NP: Applications of combined DNA microarray and chromosome sorting technologies. Chromosome Res 12:35–43 (2004).

Haaf T, Bray-Ward P: Region-specific YAC banding and painting probes for comparative genome mapping: implications for the evolution of human chromosome 2. Chromosoma 104:537–544 (1996).

Haig D: A brief history of human autosomes. Philos Trans R Soc Lond B Biol Sci 354:1447–1470 (1999).

Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, Schook LB, Alexander LJ: A first-generation porcine whole-genome radiation hybrid map. Mamm Genome 10:824–830 (1999).

Hugot JP: Phylogeny of neotropical monkeys: the interplay of morphological, molecular, and parasitological data. Mol Phylogenet Evol 9:408–413 (1998).

Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA: Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA 88:9051–9055 (1991).

Jackson MS, Rocchi M, Thompson G, Hearn T, Crosier M, Guy J, Kirk D, Mulligan L, Ricco A, Piccininni S, Marzella R, Viggiano L, Archidiacono N: Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications and unstable sequences with homologies to telomeric and other centromeric locations. Hum Mol Genet 8:205–215 (1999).

Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T: Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615 (1992).

Kasai F, Takahashi E, Koyama K, Terao K, Suto Y, Tokunaga K, Nakamura Y, Hirai M: Comparative FISH mapping of the ancestral fusion point of human chromosome 2. Chromosome Res 8:727–735 (2000).

Kay RF: The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea). J Hum Evol 19:175–208 (1990).

Kehrer-Sawatzki H, Schreiner B, Tanzer S, Platzer M, Müller S, Hameister H: Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am J Hum Genet 71:375–388 (2002).

Klinger HP: The somatic chromosomes of some primates (Tupaia glis, Nycticebus coucang, Tarsius bancanus, Cercocebus aterrimus, Symphalangus syndactylus). Cytogenetics 85:140–151 (1963).

Koehler U, Arnold N, Wienberg J, Tofanelli S, Stanyon R: Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization. Am J Phys Anthropol 97:37–47 (1995a).

Koehler U, Bigoni F, Wienberg J, Stanyon R: Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30:287–292 (1995b).

Koop BF, Siemieniak D, Slightom JL, Goodman M, Dunbar J, Wright PC, Simons EL: Tarsius delta- and beta-globin genes: conversions, evolution, and systematic implications. J Biol Chem 264:68–79 (1989a).

Koop BF, Tagle DA, Goodman M, Slightom JL: A molecular view of primate phylogeny and important systematic and evolutionary questions. Mol Biol Evol 6:580–612 (1989b).

Lengauer C, Wienberg J, Cremer T, Lüdecke H-J, Horsthemke B: Comparative chromosome band mapping in primates by in situ suppression hybridization of band specific DNA microlibraries. Hum Evol 6:67–71 (1991).

Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC: Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234 (1988).

Locke DP, Archidiacono N, Misceo D, Cardone MF, Deschamps S, Roe B, Rocchi M, Eichler EE: Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol 4:R50 (2003).

Lüdecke HJ, Senger G, Claussen U, Horsthemke B: Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338:348–350 (1989).

Ma NS, Lin KC: Chromosome mapping of the owl monkey CSF1R and IL5 genes. Genomics 13:1174–1177 (1992).

Marks J: Evolutionary tempo and phylogenetic inference based on primate karyotypes. Cytogenet Cell Genet 34:261–264 (1982).

Marks J: Evolution of human chromosomes, in Jones S, Martin R, Pilbeam D (eds): The Cambridge Encyclopedia of Human Evolution (Cambridge University Press, Cambridge 1992).

Marzella R, Viggiano L, Miolla V, Storlazzi CT, Ricco A, Gentile E, Roberto R, Surace C, Fratello A, Mancini M, Archidiacono N, Rocchi M: Molecular cytogenetic resources for chromosome 4 and comparative analysis of phylogenetic chromosome IV in great apes. Genomics 63:307–313 (2000).

Matera AG, Marks J: Complex rearrangements in the evolution of hominoid chromosome XVII. J Hum Evol 24:233–238 (1992).

McConkey EH: The origin of human chromosome 18 from a human/ape ancestor. Cytogenet Cell Genet 76:189–191 (1997).

Medeiros MA, Barros RM, Pieczarka JC, Nagamachi CY, Ponsa M, Garcia M, Garcia F, Egozcue J: Radiation and speciation of spider monkeys, genus Ateles, from the cytogenetic viewpoint. Am J Primatol 42:167–178 (1997).

Mefford HC, Trask BJ: The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3:91–102 (2002).

Mellersh CS, Hitte C, Richman M, Vignaux F, Priat C, Jouquand S, Werner P, Andre C, DeRose S, Patterson DF, Ostrander EA, Galibert F: An integrated linkage-radiation hybrid map of the canine genome. Mamm Genome 11:120–130 (2000).

Miller DA: Evolution of primate chromosomes. Science 198:1116–1124 (1977).

Misceo D, Ventura M, Eder V, Rocchi M, Archidiacono N: Human chromosome 16 conservation in primates. Chromosome Res 11:323–326 (2003).

Montefalcone G, Tempesta S, Rocchi M, Archidiacono N: Centromere repositioning. Genome Res 9:1184–1188 (1999).

Morescalchi MA, Schempp W, Consigliere S, Bigoni F, Wienberg J, Stanyon R: Mapping chromosomal homology between humans and the black-handed spider monkey by fluorescence in situ hybridization. Chromosome Res 5:527–536 (1997).

Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T: Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93:242–248 (2001).

Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Claussen U, Liehr T: Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding. Int J Mol Med 12:139–146 (2003).

Müller S, Wienberg J: “Bar-coding” primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109:85–94 (2001).

Müller S, Koehler U, Wienberg J, Marzella R, Finelli P, Antonacci R, Rocchi M, Archidiacono N: Comparative fluorescence in situ hybridization mapping of primate chromosomes with _Alu_-PCR generated probes from human/rodent somatic cell hybrids. Chromosome Res 4:38–42 (1996).

Müller S, O’Brien PC, Ferguson-Smith MA, Wienberg J: A novel source of highly specific chromosome painting probes for human karyotype analysis derived from primate homologues. Hum Genet 101:149–153 (1997a).

Müller S, O’Brien PC, Ferguson-Smith MA, Wienberg J: Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78:260–271 (1997b).

Müller S, Rocchi M, Ferguson-Smith MA, Wienberg J: Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization. Hum Genet 100:271–278 (1997c).

Müller S, O’Brien PC, Ferguson-Smith MA, Wienberg J: Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33:445–452 (1998).

Müller S, Stanyon R, O’Brien PC, Ferguson-Smith MA, Plesker R, Wienberg J: Defining the ancestral karyotype for all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108:393–400 (1999).

Müller S, Stanyon R, Finelli P, Archidiacono N, Wienberg J: Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution. Proc Natl Acad Sci USA 97:206–211 (2000).

Müller S, Neusser M, O’Brien PC, Wienberg J: Molecular cytogenetic characterization of the EBV-producing cell line B95-8 (Saguinus oedipus, Platyrrhini) by chromosome sorting and painting. Chromosome Res 9:689–693 (2001).

Müller S, Neusser M, Wienberg J: Towards unlimited colors for fluorescence in-situ hybridization (FISH). Chromosome Res 10:223–232 (2002).

Müller S, Hollatz M, Wienberg J: Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501 (2003).

Müller S, Finelli P, Neusser M, Wienberg J: The evolutionary history of human chromosome 7. Genomics 84 (in press 2004).

Murphy WJ, Sun S, Chen Z, Yuhki N, Hirschmann D, Menotti-Raymond M, O’Brien SJ: A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res 10:691–702 (2000).

Murphy WJ, Page JE, Smith C Jr, Desrosiers RC, O’Brien SJ: A radiation hybrid mapping panel for the rhesus macaque. J Hered 92:516–519 (2001).

Murphy WJ, Froenicke L, O’Brien SJ, Stanyon R: The origin of human chromosome 1 and its homologs in placental mammals. Genome Res 13:1880–1888 (2003).

Nagamachi CY, Pieczarka JC, Schwarz M, Barros RM, Mattevi MS: Comparative chromosomal study of five taxa of genus Callithrix, group jacchus (Platyrrhini, Primates). Am J Primatol 41:53–60 (1997).

Nash WG, O’Brien SJ: Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: carnivores and primates. Proc Natl Acad Sci USA 79:6631–6635 (1982).

Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O’Brien SJ: Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83:182–192 (1998).

Neusser M, Stanyon R, Bigoni F, Wienberg J, Müller S: Molecular cytotaxonomy of New World monkeys (Platyrrhini) – comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94:206–215 (2001).

Nickerson E, Nelson DL: Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50:368–372 (1998).

Nie W, Liu R, Chen Y, Wang J, Yang F: Mapping chromosomal homologies between humans and two langurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Chromosome Res 6:447–453 (1998).

Nie W, Rens W, Wang J, Yang F: Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes. Cytogenet Cell Genet 92:248–253 (2001).

O’Brien SJ: Genetic Maps, vol 3 (Cold Spring Harbor Press, New York 1984).

O’Brien SJ, Seuanez H, Womack J: On the evolution of genome organization in mammals, in MacIntyre RJ (ed): Molecular Evolutionary Genetics, pp 519–589 (Plenum Press, New York 1985).

Ohno S: Ancient linkage groups and frozen accidents. Nature 244:259–262 (1973).

Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J: Fluorescence in situ hybridization with human chromosome-specific libraries – detection of trisomy-21 and translocations of chromosome-4. Proc Natl Acad Sci USA 85:9138–9142 (1988).

Ponsa M, Estop AM, Miro R, Rubio A, Egozcue J: Banding patterns of the chromosomes of Miopithecus talapoin compared with Macaca mulatta and Cercopithecus aethiops. Cytogenet Cell Genet 28:41–46 (1980).

Pujana MA, Nadal M, Gratacos M, Peral B, Csiszar K, Gonzalez-Sarmiento R, Sumoy L, Estivill X: Additional complexity on human chromosome 15q: identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res 11:98–111 (2001).

Rens W, Yang F, O’Brien PC, Solanky N, Ferguson-Smith MA: A classification efficiency test of spectral karyotyping and multiplex fluorescence in situ hybridization: identification of chromosome homologies between Homo sapiens and Hylobates leucogenys. Genes Chromosomes Cancer 31:65–74 (2001).

Richard F, Dutrillaux B: Origin of human chromosome 21 and its consequences: a 50-million-year-old story. Chromosome Res 6:263–268 (1998).

Richard F, Lombard M, Dutrillaux B: ZOO-FISH suggests a complete homology between human and capuchin monkey (Platyrrhini) euchromatin. Genomics 36:417–423 (1996).

Ried T, Baldini A, Rand TC, Ward DC: Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci USA 89:1388–1392 (1992).

Ried T, Arnold N, Ward DC, Wienberg J: Comparative high-resolution mapping of human and primate chromosomes by fluorescence in situ hybridization. Genomics 18:381–386 (1993).

Rodrigues LR, Barros RM, Pissinati A, Pieczarka JC, Nagamachi CY: Cytogenetic study of Callicebus hoffmannsii (Cebidae, Primates) and comparison with C. m. moloch. Cytobios 105:137–145 (2001).

Rokas A, Holland PW: Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459 (2000).

Roos C, Geissmann T: Molecular phylogeny of the major hylobatid divisions. Mol Phylogenet Evol 19:486–494 (2001).

Rosenberger AL: The Higher Taxa (Academia Brasiliera de Ciencias, Rio de Janeiro 1981).

Rumpler Y, Dutrillaux B: Chromosomal evolution in Malagasy lemurs. I. Chromosome banding studies in the genuses Lemur and Microcebus. Cytogenet Cell Genet 17:268–281 (1976).

Rumpler Y, Couturier J, Warter S, Dutrillaux B: The karyotype of Galago crassicaudatus is ancestral for lorisiforms. Folia Primatol 40:227–231 (1983).

Rumpler Y, Waters S, Ishak B, Dutrillaux B: Chromosomal evolution in prosimians. Hum Evol 4:157–170 (1989).

Ryan SC, Zielinski R, Dugaiczyk A: Structure of the gorilla alpha-fetoprotein gene and the divergence of primates. Genomics 9:60–72 (1991).

Rylands AB, Schneider H, Langguth A, Mittermeier RA, Groves CP, Rodrigues LR: An Assessment of the diversity of New World primates. Neotropical Primates 8:62–93 (2000).

Samonte RV, Eichler EE: Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72 (2002).

Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Fronicke L: Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6:342–347 (1994).

Schmitz J, Ohme M, Zischler H: SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157:777–784 (2001).

Schneider H: The current status of the New World monkey phylogeny. An Acad Bras Cienc 72:165–172 (2000).

Schneider H, Canavez FC, Sampaio I, Moreira MA, Tagliaro CH, Seuánez HN: Can molecular data place each neotropical monkey in its own branch? Chromosoma 109:515–523 (2001).

Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T: Multicolor spectral karyotyping of human chromosomes. Science 273:494–497 (1996).

Seuánez HN: The Phylogeny of Human Chromosomes (Springer, Berlin 1979).

Sherlock JK, Griffin DK, Delhanty JD, Parrington JM: Homologies between human and marmoset (Callithrix jacchus) chromosomes revealed by comparative chromosome painting. Genomics 33:214–219 (1996).

Shoshani J, Groves CP, Simons EL, Gunnell GF: Primate phylogeny: morphological vs. molecular results. Mol Phylogenet Evol 5:102–154 (1996).

Speicher MR, Gwyn Ballard S, Ward DC: Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375 (1996).

Stankiewicz P, Park SS, Inoue K, Lupski JR: The evolutionary chromosome translocation 4;19 in Gorilla gorilla is associated with microduplication of the chromosome fragment syntenic to sequences surrounding the human proximal CMT1A-REP. Genome Res 11:1205–1210 (2001).

Stanyon R, Chiarelli B: Phylogeny of the Hominoidea: The chromosome evidence. J Hum Evol 11:493–504 (1982).

Stanyon R, Sineo L, Chiarelli B, Camperio-Ciani A, Haimoff AR, Mootnick EH, Sutarman D: Banded karyotypes of the 44-chromosome gibbons. Folia Primatol 48:56–64 (1987).

Stanyon R, Wienberg J, Romagno D, Bigoni F, Jauch A, Cremer T: Molecular and classical cytogenetic analyses demonstrate an apomorphic reciprocal chromosomal translocation in Gorilla gorilla. Am J Phys Anthropol 88:245–250 (1992).

Stanyon R, Yang F, Cavagna P, O’Brien PC, Bagga M, Ferguson-Smith MA, Wienberg J: Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet 84:150–155 (1999).

Stanyon R, Consigliere S, Müller S, Morescalchi A, Neusser M, Wienberg J: Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey. Am J Primatol 50:95–107 (2000).

Stanyon R, Consigliere S, Bigoni F, Ferguson-Smith M, O’Brien PC, Wienberg J: Reciprocal chromosome painting between a New World primate, the woolly monkey, and humans. Chromosome Res 9:97–106 (2001).

Stanyon R, Koehler U, Consigliere S: Chromosome painting reveals that galagos have highly derived karyotypes. Am J Phys Anthropol 117:319–326 (2002).

Stanyon R, Bonvicino CR, Svartman M, Seuánez HN: Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n = 16) known in primates. Chromosoma 112:201–206 (2003a).

Stanyon R, Stone G, Garcia M, Froenicke L: Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82:245–249 (2003b).

Svartman M, Stone G, Page JE, Stanyon R: A chromosome painting test of the basal eutherian karyotype. Chromosome Res 12:45–53 (2004).

Swofford D: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4 (Sinauer Associates, Sunderland 1998).

Tsend-Ayush E, Grutzner F, Yue Y, Grossmann B, Hansel U, Sudbrak R, Haaf T: Plasticity of human chromosome 3 during primate evolution. Genomics 83:193–202 (2004).

Turleau C, De Grouchy J, Klein M: [Chromosomal phylogeny of man and the anthropomorphic primates. (Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Attempt at reconstitution of the karyotype of the common ancestor]. Ann Genet 15:225–240 (1972).

Van Tuinen P, Ledbetter DH: Cytogenetic comparison and phylogeny of three species of Hylobatidae. Am J Phys Anthropol 61:453–466 (1983).

Van Tuinen P, Mootnick AR, Kingswood SC, Hale DW, Kumamoto AT: Complex, compound inversion/translocation polymorphism in an ape: presumptive intermediate stage in the karyotypic evolution of the agile gibbon Hylobates agilis. Am J Phys Anthropol 110:129–142 (1999).

Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M: Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068 (2003).

Warburton PE, Willard HF: Evolution of centromeric alpha satellite DNA: molecular organization within and between human and primate chromosomes, in Jackson MS, Strachan T, Dover G (eds.): Human Genome Evolution, pp 121–146 (Bios, Oxford 1996).

Watanabe TK, Bihoreau MT, McCarthy LC, Kiguwa SL, Hishigaki H, Tsuji A, Browne J, et al: A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet 22:27–36 (1999).

Wienberg J, Jauch A, Stanyon R, Cremer T: Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 8:347–350 (1990).

Wienberg J, Stanyon R, Jauch A, Cremer T: Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma 101:265–270 (1992).

Wienberg J, Jauch A, Ludecke HJ, Senger G, Horsthemke B, Claussen U, Cremer T, Arnold N, Lengauer C: The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary. Chromosome Res 2:405–410 (1994).

Wienberg J, Stanyon R, Nash WG, O’Brien PC, Yang F, O’Brien SJ, Ferguson-Smith MA: Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77:211–217 (1997).

Wienberg J, Frönicke L, Stanyon R: Insights into mammalian genome organization and evolution by molecular cytogenetics, in Clark MS (ed): Comparative Genomics, pp 207–244 (Kluver Acad. Publ., Dordrecht 2000).

Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M: Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc Natl Acad Sci USA 100:7181–188 (2003).

Yang F, O’Brien PC, Ferguson-Smith MA: Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8:219–227 (2000).

Yang F, Alkalaeva EZ, Perelman PL, Pardini AT, Harrison WR, O’Brien PC, Fu B, Graphodatsky AS, Ferguson-Smith MA, Robinson TJ: Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci USA 100:1062–1066 (2003).

Yu D, Yang F, Liu R: [A comparative chromosome map between human and Hylobates hoolock built by chromosome painting]. Yi Chuan Xue Bao 24:417–423 (1997).

Yunis JJ, Prakash O: The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530 (1982).

Zietkiewicz E, Richer C, Labuda D: Phylogenetic affinities of tarsier in the context of primate Alu repeats. Mol Phylogenet Evol 11:77–83 (1999).

© 2005 S. Karger AG, Basel

2004

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

You do not currently have access to this content.

Sign in

Digital Version

Pay-Per-View Access

$39.00

1 Karger Article Bundle Token

$150

Rental

This article is also available for rental through DeepDyve.