Epithelial-Mesenchymal Transitions in Cancer Progression (original) (raw)

Skip Nav Destination

Article navigation

Issue Cover

Research Articles| July 17 2008

C. Birchmeier;

aDepartments of Medical Genetics, and

Search for other works by this author on:

W. Birchmeier;

bCell Biology, Max-Delbrueck Zentrum fur molekulare Medizin, Berlin,

Search for other works by this author on:

B. Brand-Saberi

cInstitut für Anatomie II der Universität Freiburg, Germany

Search for other works by this author on:

Acta Anatomica (1996) 156 (3): 217–226.

Content Tools

Abstract

Epithelial cells are the most important cell type in the development of human malignancies. More than 90% of all malignant tumors are carcinomas, and thus of epithelial origin. Aberrant growth and the ability to invade the underlying tissues are intrinsic properties of the fatally altered cells. Multiple genetic alterations that can influence growth and genetic stability of the carcinoma cells have been characterised during tumor progression. Loss of epithelial morphology and the acquisition of mesenchymal characteristics are typical for carcinoma cells late in tumor progression and correlate with metastatic potential. In vitro, epithelial-mesenchymal transitions can be induced by interference with the integrity of the adherens junction, by signalling via tyrosine kinases, and by oncogene expression. In carcinoma cells, loss or downregulation of E-cadherin expression are frequently observed in carcinomas, and correlate with the malignancy of the tumor. In general, this change in expression is regulated at the transcriptional level. However, tumor types or cell lines exist which show mesenchymal characteristics but nevertheless express E-cadherin protein or mRNA. A more-detailed analysis demonstrated that other mechanisms that interfere with E-cadherin-mediated cell adhesion can be operative. Mutations in the E-cadherin gene and loss or mutation of the second, intact copy as well as mutation in the catenin genes, which encode proteins that interact with the cytoplasmic portion of E-cadherin, can be observed. In addition, transient or unregulated phosphorylation by receptor tyrosine kinases or oncogenic tyrosine kinases, respectively, can interfere with the epithelial morphology and induce a mesenchymal conversion. Since tyrosine phosphorylation of β-catenin correlates with the epithelial-mesenchymal transition that is observed, E-cadherin-mediated cell adhesion might be modulated by such a mechanism. Interestingly, the same molecules implicated in the control of malignant properties turn out to play fundamental roles in the control of normal epithelial growth, differentiation and morphogenesis.

This content is only available via PDF.

© 1996 S. Karger AG, Basel

1996

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

You do not currently have access to this content.

Sign in

Digital Version

Pay-Per-View Access

$39.00

1 Karger Article Bundle Token

$150

Rental

This article is also available for rental through DeepDyve.

Citing articles via