The Influence of Land Use/Land Cover on Climatological Values of the Diurnal Temperature Range (original) (raw)
Abstract
The diurnal temperature range (DTR) at weather observation stations that make up the U.S. Historical Climatology Network was evaluated with respect to the predominant land use/land cover associated with the stations within three radii intervals (100, 1000, and 10 000 m) of the stations. Those stations that were associated with predominantly rural land use/land cover (LULC) usually displayed the greatest observed DTR, whereas those associated with urban related land use or land cover displayed the least observed DTR. The results of this study suggest that significant differences in the climatological DTR were observed and could be attributed to the predominant LULC associated with the observation stations. The results also suggest that changes in the predominant LULC conditions, within as great as a 10 000 m radius of an observation station, could significantly influence the climatological DTR. Future changes in the predominant LULC associated with observation sites should be monitored similar to the current practice of monitoring changes in instruments or time of observation at the observations sites.
Abstract
The diurnal temperature range (DTR) at weather observation stations that make up the U.S. Historical Climatology Network was evaluated with respect to the predominant land use/land cover associated with the stations within three radii intervals (100, 1000, and 10 000 m) of the stations. Those stations that were associated with predominantly rural land use/land cover (LULC) usually displayed the greatest observed DTR, whereas those associated with urban related land use or land cover displayed the least observed DTR. The results of this study suggest that significant differences in the climatological DTR were observed and could be attributed to the predominant LULC associated with the observation stations. The results also suggest that changes in the predominant LULC conditions, within as great as a 10 000 m radius of an observation station, could significantly influence the climatological DTR. Future changes in the predominant LULC associated with observation sites should be monitored similar to the current practice of monitoring changes in instruments or time of observation at the observations sites.