Climate Sensitivity from Fluctuation Dissipation: Some Simple Model Tests (original) (raw)
Abstract
Leith has suggested that climatic response to change in external forcing parameters of the climate system may be estimated via the fluctuation-dissipation theorem (FDT). The method, which uses the natural fluctuations of the atmosphere to probe its dynamics, is tested here using a twenty-variable truncation model of the barotropic vorticity equation. Dissipative terms are added to the equations, so that the model is pushed away from the region where it is expected to satisfy the FDT. It is found that, even though the FDT is no longer satisfied in every detail, the FDT continues to provide an excellent estimate of the climatic sensitivity of the model.
Abstract
Leith has suggested that climatic response to change in external forcing parameters of the climate system may be estimated via the fluctuation-dissipation theorem (FDT). The method, which uses the natural fluctuations of the atmosphere to probe its dynamics, is tested here using a twenty-variable truncation model of the barotropic vorticity equation. Dissipative terms are added to the equations, so that the model is pushed away from the region where it is expected to satisfy the FDT. It is found that, even though the FDT is no longer satisfied in every detail, the FDT continues to provide an excellent estimate of the climatic sensitivity of the model.