Molecular Analysis of Cell Type-Specific Gene Expression Profile During Mouse Spermatogenesis by Laser Microdissection and qRT-PCR (original) (raw)
Kerr JB. Macro, micro, and molecular research on spermatogenesis: the quest to understand its control. Micro Res Tech. 1995;32: 364–384. ArticleCAS Google Scholar
Bonner RF, Emmert-Buck M, Cole K, et al. Laser capture microdissection: molecular analysis of tissue. Science. 1997;278(5342): 1481–1483. ArticleCASPubMed Google Scholar
Kohda Y, Murakami H, Moe OW, Star RA. Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int. 2000;57(1):321–331. ArticleCASPubMed Google Scholar
Luo L, Salunga RC, Guo H, et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med. 1999;5(1): 117–122. ArticleCASPubMed Google Scholar
Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR Jr, Elkahloun AG. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 1999;59(22): 5656–5661. CASPubMed Google Scholar
Sluka P, O’Donnell L, Stanton PG. Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real time polymerase chain reaction. Biol Reprod. 2002;67(3):820–828. ArticleCASPubMed Google Scholar
Sluka P, O’Donnell L, MacLachlan RI, Stanton PG. Application of laser-capture microdissection to analysis of gene expression in the testis. Prog Histochem Cytochem. 2008;42(4):173–201. ArticleCASPubMed Google Scholar
Espina V, Milia J, Wu G, Cowherd S, Liotta LA. Laser capture microdissection. Methods Mol Biol. 2006;319:213–229. ArticleCASPubMed Google Scholar
Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat. 1952;90(2):167–215. ArticleCASPubMed Google Scholar
Russell LD, Ettlin RA, SinhaHikim APS, et al. Histological and Histopathological Evaluation of the Testis. Clearwater, FL: Cache River Press; 1990. Google Scholar
Hess R, de Franca L. Spermatogenesis and cycle of the seminiferous epithelium. In: Cheng CY, ed. Molecular Mechanisms in Spermatogenesis. Austin, TX: Landes Bioscience/Springer Science; 2008;1–15. Google Scholar
Hemendinger RA, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant. 2002;11(6):499–505. ArticleCASPubMed Google Scholar
Teerds KJ, de Boer-Brouwer M, Dorrington JH, Balvers M, Ivell R. Identification of markers for precursor and leydig cell differentiation in the adult rat testis following ethane dimethyl sulphonate administration. Biol Reprod. 1999;60(6):1437–1445. ArticleCASPubMed Google Scholar
Kokk K, Veräjänkorva E, Laato M, Wu XK, Tapfer H, Pöllänen P. Expression of insulin receptor substrates 1–3, glucose transporters GLUT-1-4, signal regulatory protein 1α, phosphatidylinositol 3-kinase and protein kinase B at the protein level in the human testis. Anat Sci Int. 2005;80(2):91–96. ArticleCASPubMed Google Scholar
Bustin SA, Benes V, Garson JA, et al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622. ArticleCASPubMed Google Scholar
Braun Robert E. The Mammalian Reproductive Genetics Database. Bar Harbor, ME: The Jackson Laboratory; 2010. http://mrg.gs.washington.edu. Accessed August 31, 2010.
Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71(1):319–330. ArticleCASPubMed Google Scholar
Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev. 2004;67:264–272. ArticleCASPubMed Google Scholar
Erickson HS, Albert PS, Gillespie JW, et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc. 2009;4(6):902–922. ArticleCASPubMedPubMed Central Google Scholar
Vinas J, Piferrer F. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biol Reprod. 2008;79(4):738–747. ArticleCASPubMed Google Scholar
Suarez-Quian CA, Goldstein SR, Bonner RF. Laser capture microdissection: a new tool for the study of spermatogenesis. J Androl. 2000;21(5):601–608. CASPubMed Google Scholar
Weber JE, Russell LD, Wong V, Peterson RN. Three dimensional reconstruction of a rat stage V Sertoli cell. II. Morphometry of Sertoli-Sertoli and Sertoli-germ cell relationships. Am J Anat. 1983;167(2):163–179. ArticleCASPubMed Google Scholar
Guten IV, Torres B, Bols PRJ. Flow cytometry purification of mouse meiotic cells. J Vis Exp. 2011;50:e2602. doi:10.3891/2602(2011).
Namekawa SH, Park PJ, Zhang LF, et al. Post meiotic sex chromatin in the male germ line of mice. Current Biol. 2006;16:660–667. ArticleCAS Google Scholar
Takahashi K, Shichijo S, Noguchi M, Hirohata M, Itoh K. Identification of MAGE-1 and MAGE-4 proteins in spermatogonia and primary spermatocytes of testis. Cancer Res. 1995;55(16): 3478–3482. CASPubMed Google Scholar
Chambost H, Van Baren N, Brasseur F, et al. Expression of gene MAGE-A4 in Reed-Sternberg cells. Blood. 2000;95(11): 3530–3533. CASPubMed Google Scholar
Allen JW, Dix DJ, Collins BW, et al. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma. 1996;104(6):414–421. ArticleCASPubMed Google Scholar
Zakeri ZF, Wolgemuth DJ, Hunt CR. Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol. 1988;8: 2925–2932. ArticleCASPubMedPubMed Central Google Scholar
Son W, Hwang S, Han C, Lee JH, Kim S, Kim YC. Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod. 1999;5(12):1122–1126. ArticleCASPubMed Google Scholar
Sasaki T, Marcon E, McQuire T, et al. Bat3 deficiency accelerates the degradation of Hsp70-2/HspA2 during spermatogenesis. J Cell Biol. 2008;182:449–458. ArticleCASPubMedPubMed Central Google Scholar
Hüttemann M, Kadenbach B, Grossman LI. Mammalian subunit IV isoforms of cytochrome c oxidase. Gene. 2001;267(1): 111–123. ArticlePubMed Google Scholar
Mali P, Kaipia A, Kangasniemi M, et al. Stage-specific expression of nucleoprotein mRNAs during rat and mouse spermiogenesis. Reprod Fertil Dev. 1989;1(4):369–382. ArticleCASPubMed Google Scholar
Brewer L, Corzett M, Balhorn R. Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem. 2002;277:3885–3890. Article Google Scholar
Zhao M, Shirley CR, Hayashi S, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 2004;38:200–213. ArticleCASPubMed Google Scholar
Sutovsky P, Manandhar G. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In: De jonge C, Barrett C, eds. The Sperm Cell: Production, Maturation, Fertilization, Regeneration. Cambridge, UK: The Cambridge Press; 2006:1–30.
Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250(1–2):66–69. ArticleCASPubMed Google Scholar
Aguilar-Mahecha A, Hales BF, Robaire B. Expression of stress response genes in germ cells during spermatogenesis. Biol Reprod. 2001;65(1):119–127. ArticleCASPubMed Google Scholar
Hales DB, Allen JA, Shankara T, et al. Mitochondrial function in Leydig cell steroidogenesis. Ann N Y Acad Sci. 2005;1061: 120–134. ArticleCASPubMed Google Scholar
Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol. 2008;636:154–171. ArticleCASPubMed Google Scholar
Grad I, Cederroth CR, Walicki J, et al. The molecular chaperone HSP90A is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One. 2010;5:1–11. ArticleCAS Google Scholar
Yufu Y, Nishimura J, Nawata H. High constitutive expression of heat shock protein 90α in human acute leukemia cells. Leuk Res. 1992;16(6–7):597–605. ArticleCASPubMed Google Scholar
Biggiogera M, Fakan S, Leser G, Martin TE, Gordon J. Immunoelectron microscopic visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev. 1990; 26(2):150–158. ArticleCASPubMed Google Scholar
Simmons SO, Fan CY Ramabhadran. Cellular stress pathway systems as a sentinel in toxicological screening. Toxicol Sci. 2009; 111(2):202–225. ArticleCASPubMed Google Scholar
Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM. Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem. 1995;270(45): 26993–26999. ArticleCASPubMed Google Scholar
Nam SY, Fujisawa M, Kim JS, Kurohmaru M, Hayashi Y. Expression pattern of phospholipid hydroperoxide glutathione peroxidase messenger ribonucleic acid in mouse testis. Biol Reprod. 1998;58(5):1272–1276. ArticleCASPubMed Google Scholar
Puglisi R, Bevilacqua A, Carlomagno G, et al. Mice over expressing the mitochondrial phospholipid hydroperoxide glutathione peroxidase in male germ cells show abnormal spermatogenesis and reduced fertility. Endocrinology. 2007;148:4302–4309. ArticleCASPubMed Google Scholar
Imai H, Hakkaku N, Iwamoto N, et al.. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem. 2009;284:32522–32532. ArticleCASPubMedPubMed Central Google Scholar
Flachs P, Sponarova J, Kopecky P, et al. Mitochondrial uncoupling protein 2 gene transcript levels are elevated in maturating erythroid cells. FEBS Lett. 2007;581(6):1093–1097. ArticleCASPubMed Google Scholar
Mattiasson G, Sullivan PG. The emerging functions of ucp2 in health, disease, and therapeutics. Antioxid Redox Signal. 2006; 8(1–2):1–38. ArticleCAS Google Scholar
Fleury C, Neverova M, Collins S, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinaemia. Nat Genet. 1997;15(3):269–272. ArticleCASPubMed Google Scholar
Zhang, Shang Y, Liao S, et al.. Uncoupling protein 2 protects testicular germ cells from hyperthermia-induced apoptosis. Biochem Biophys Res Commun. 2007;360(2):327–332. ArticleCASPubMed Google Scholar
Lasso JL, Noiles EE, Alvarez JG, et al. Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J Androl. 1994;15:255–265. CASPubMed Google Scholar
Gu W, Morales C, Hecht NB. In male mouse germ cells, copperzinc superoxide dismutase utilizes alternative promoters that produce multiple transcripts with different translation potential. J Biol Chem. 1995;270(1):236–243. ArticleCASPubMed Google Scholar
Gu W, Hecht NB. Developmental expression of glutathione peroxidase, catalase, and manganese superoxide dismutase mRNAs during spermatogenesis in the mouse. J Androl. 1996;17(3):256–262. CASPubMed Google Scholar