α-Amylase in Vaginal Fluid: Association With Conditions Favorable to Dominance of Lactobacillus (original) (raw)
Zakowski JJ, Bruns DE. Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci. 1985;21(4):283–322. CASPubMed Google Scholar
Lee YS, Raju GC. The expression and localization of amylase in normal and malignant glands of the endometrium and endocervix. J Pathol. 1988;155(3):201–205. CASPubMed Google Scholar
Skude G, Mårdh PA, Weström L. Amylases of the genital tract. I. Isoamylases of genital tract tissue homogenates and peritoneal fluid. Am J Obstet Gynecol. 1976;126(6):652–656. CASPubMed Google Scholar
Spear GT, French AL, Gilbert D, et al. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J Infect Dis. 2014;210(7): 1019–1028. CASPubMedPubMed Central Google Scholar
Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5): 543–546. CASPubMed Google Scholar
Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16(9):1809–1813. CASPubMed Google Scholar
Linhares IM, Summers PR, Larsen B, Giraldo PC, Witkin SS. Contemporary perspectives on vaginal pH and lactobacilli. Am J Obstet Gynecol. 2011;204(2):1–5. Google Scholar
Cruickshank R. The biology of the vagina in the human subject. II: The bacterial flora and secretion of the vagina in relation to glycogen in the vaginal epithelium. J Obstet Gynecol Br Emp. 1934;41(2):208–226. Google Scholar
Mirmonsef P, Hotton AL, Gilbert D, et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS One. 2014;9(7):e102467. PubMedPubMed Central Google Scholar
Mitchell C, Marrazzo J. Bacterial vaginosis and the cervicovaginal immune response. Am J Reprod Immunol. 2014;71(6): 555–563. CASPubMedPubMed Central Google Scholar
Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577): 1961–1971. PubMed Google Scholar
Zhou X, Westman R, Hickey R, et al. Vaginal microbiota of women with frequent vulvovaginal candidiasis. Infect Immun. 2009;77(9):4130–4135. CASPubMedPubMed Central Google Scholar
Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74(1): 14–22. CASPubMed Google Scholar
Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29(2):297–301. CASPubMedPubMed Central Google Scholar
Beghini J, Linhares I, Giraldo P, Ledger W, Witkin S. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders [published online September 8, 2014]. BJOG. 2014. doi: 10.1111/1471–0528.13072.
Beghini J, Giraldo PC, Linhares IM, Ledger WJ, Witkin SS. Regulation of neutrophil gelatinase-associated lipocalin in vaginal fluid: relation to pathogenesis [published online February 10, 2015]. Reprod Sci. 2015.
Witkin SS, Mendes-Soares H, Linhares IM, et al. Influence of vaginal bacteria and d-and l-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. MBio. 2013;4(4):e00460–13. PubMedPubMed Central Google Scholar
Boskey ER, Telsch KM, Whaley KJ, Moench TR, Cone RA. Acid production by vaginal flora in vitro is consistent with the ratio and extent of vaginal acidification. Infect Immun. 1999;67(10): 5170–5175. CASPubMedPubMed Central Google Scholar
Hillier SL. Diagnostic microbiology of bacterial vaginosis. Am J Obstet Gynecol. 1993;169(2 Pt 2):455–459. CASPubMed Google Scholar
Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immuno-globulin superfamily receptor function and role in pathology. Exp Mol Pathol. 2007;83(3):283–295. CASPubMedPubMed Central Google Scholar
Rampersaud R, Planet PJ, Randis TM, et al. Interolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol. 2011;193(5):1034–1041. CASPubMed Google Scholar
Cooper MD, Roberts MH, Barauskas OL, Jarvis GA. Secretory leukocyte protease inhibitor binds to Neisseria gonorrhoeae outer membrane opacity protein and is bactericidal. Am J Reprod Immunol. 2012;68(2):116–127. CASPubMedPubMed Central Google Scholar
Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1(5):440–464. PubMed Google Scholar
Balkus J, Agnew K, Lawler R, Mitchell C, Hitti J. Effects of pregnancy and bacterial vaginosis on proinflammatory cytokine and secretory leukocyte protease inhibitor concentrations in vaginal secretions. J Pregnancy. 2010;2010:385981. PubMedPubMed Central Google Scholar
Mitchell C, Balkus J, Agnew K, Lawler R, Hitti J. Changes in the vaginal microenvironment with metronidazole treatment for bacterial vaginosis in early pregnancy. J Womens Health. 2009; 18(11):1817–1824. Google Scholar
Draper DL, Landers DV, Krohn MA, Hillier SL, Wiesenfeld HC, Heine RP. Levels of vaginal secretory leukocyte protease inhibitor are decreased in women with lower reproductive tract infections. Am J Obstet Gynecol. 2000;183(5): 1243–1248. CASPubMed Google Scholar
Nikolaitchouk N, Andersch B, Falsen E, Strömbeck L, Mattsby-Baltzer I. The lower genital tract microbiota in relation to cytokine-, SLPI- and endotoxin levels: application of checkerboard DNA-DNA hybridization (CDH). APMIS. 2008;116(4): 263–277. CASPubMed Google Scholar
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10(5):1033–1043. CASPubMed Google Scholar
Jarosik GP, Land CB, Duhon P, Chandler R Jr, Mercer T. Acquisition of iron by Gardnerella vaginalis. Infect Immun. 1998; 66(10):5041–5047. CASPubMedPubMed Central Google Scholar
Imbert M, Blondeau R. On the iron requirement of lactobacilli grown in chemically defined medium. Curr Microbiol. 1998;37(1):64–66. CASPubMed Google Scholar
Elli M, Zink R, Rytz A, Reniero R, Morelli L. Iron requirement of lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol. 2000;88(4):695–703. CASPubMed Google Scholar
Pivarcsi A, Nagy I, Koreck A, et al. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbs Infect. 2005;7(9–10):1117–1127. CAS Google Scholar
Curvelo JA, Barreto AL, Portela MB, et al. Effect of the secretory leukocyte proteinase inhibitor (SLPI) on Candida albicans biological processes: a therapeutic alternative?. Arch Oral Biol. 2014;59(9):928–937. CASPubMed Google Scholar
Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, Weinberg A. Human beta-defensins: differential activeity against candida species and regulation by Candida albicans. J Dent Res. 2005; 84(5):445–450. CASPubMed Google Scholar