Post-recrystallisation mobilisation phenomena in metamorphosed stratabound sulphide ores | Mineralogical Magazine | Cambridge Core (original) (raw)

Article contents

Abstract

Metamorphosed stratabound iron- and base-metal sulphide deposits often exhibit microtextures in which fractures in cataclastically-deformed pyrite porphyroblasts are filled with matrix sulphides; chalcopyrite, sphalerite, pyrrhotite or galena. Discussions of such textures have mostly centred on whether solid-phase or fluid-phase mechanisms were responsible for the movement of the matrix sulphides.

The small Zn-Cu sulphide body at Gressli, in the central Norwegian Caledonides, shows these textural features to an extreme degree. Both chalcopyrite and sphalerite show heavy replacive relations to the cataclastically deformed metablastic pyrite, along fracture walls and grain boundaries. They also occur injected along the opened-up triple junctions of foam-textured pyrite. In addition, parts of the ore show patchy quartz with clear replacive relationship to all three sulphides, a feature not often reported from such ores. Such textures can be interpreted to support a mobilisation sequence chalcopyrite-sphalerite-quartz within the Gressli ore. Their extent and degree of development indicate that fluid-phase mobilisation of the three minerals must have played a dominant role. Chalcopyrite and sphalerite are most likely derived from within the ore-mass itself; an external source for the SiO2 seems most probable, in the form of metahydrothermal solutions moving along retrograde shear zones at or near ore-walls.

Keywords

Type

Research Article

Copyright

Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amstutz, G. C. (1969) Remobilisation—facts and fancy. In Remobilisation of ores and minerals (Valera, R., ed.) Assoz. Minerar. Sarda—Inst. Giacim. Minerar. Univ. Cagliari, 7-17.Google Scholar

Barton, P. B. (1978) Some ore textures involving sphalcritc from the Furutobe mine, Akita Prefecture, Japan. Mining Geology, 28, 293–300.Google Scholar

Barton, P. B. and Bethke, P. M. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineral. 72, 451–67.Google Scholar

Craig, J. R. and Vokes, F. M. (1992) Ore mineralogy of the Appalachian-Caledonian statabound sulfide deposits. Ore Geol. Rev. 7, 77–123.Google Scholar

Cox, S. F. (1987) Flow mechanisms in sulphide min-erals. In Mechanical and chemical (re)mobilisation of metalliferous mineralisation (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev. 2, 133–72.Google Scholar

Cox, S. F. Etheridge, M. A., and Wall, V. J. (1987) The role of fluids in syntectonic mass transport, and the localisation of metamorphic vein-type deposits. Ibid., 2, 65-86.Google Scholar

Cox, S. F. Wall, V. J., Etheridge, M. A., and Potter, T. F., (1991) Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria, Australia. In Ores and Metamorphism (Vokes, F. M., ed.). Ore Geol. Rev., 6, 391–423.Google Scholar

Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978) Fluids in the Earth's crust. Amsterdam, Elsevier, 383 PP.Google Scholar

Gilligan, L. B. and Marshall, B. (1987) Textural evidence for remobilisation in metamorphic environments. In Mechanical and chemical (re)mobilisation of metalliferous mineralisation (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev., 2, 205–30.Google Scholar

Grenne, T. (1988) Marginal basin type metavoleanites of the Hersjr Formation, eastern Trondheim District, Central Norwegian Caledonides. Norges geol. unders., Bull 412, 29-42.Google Scholar

Grenne, T. and Lagerbald, B. (1985) The Fundsjo Group, Central Norway, a lower Palaeozoic island arc sequence: geochemistry and regional implications. In The Caledonide Orogen—Scandinavia and related areas (Gee, D. G. and Sturt, B. A., eds.) J. Wiley & Sons, Chichester, 745-62.Google Scholar

Grenne, T. and Vokes, F. M. (1990) Sea-floor sulphides at the Høydal volcanogenic deposit, central Norwegian Caledonides. Econ. Geol. 85, 344–59.Google Scholar

Hobbs, B. E. (1987) Principles involved in mobilisation and remobilisation. In Mechanical and chemical (re)mobilisation of metalliferous mineralisation (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev. 2, 37–46.Google Scholar

Marshall, B. and Gilligan, L. B. (1987) An introduction to remobilisation: Information from ore-body geometry and experimental considerations. Ibid., 2, 87-132.Google Scholar

Marshall, B. and Gilligan, L. B. (1989) Dnrchbewegung structure, piercement cusps, and piercement veins in massive sulfide deposits: formation and interpretation. Econ. Geol., 84, 2311–9.Google Scholar

McClay, K. R. (1991) Deformation of stratiform Zn-Pb (-barite) deposits in the northern Canadian Cordillera. In Ores and Metamorphism. Special Issue (Vokes, F. M., ed.) Ore Geol. Rev. 6, 435–62.Google Scholar

McDonald, J. A. (1967) Metamorphism and its effect on sulphide assemblages. Mineral. Deposita, 2, 200–20.Google Scholar

McQueen, K. G. (1987) Deformation and remobilisa-tion in some Western Australian nickel ores. In Mechanical and chemical (re)mobilisation of metalliferous mineralization (Marshall, B. and Gilligan, L. B., eds.) Ore Geol. Rev. 2, 269–86.Google Scholar

Mookherjee, A. (1976) Ores and metamorphism: temporal and genetic relationships. In Handbook of Strata-bound and stratiform ore deposits (Wolf, K. H., ed.). Amsterdam, Elsevier, vol 4, 203-60.Google Scholar

Natale, P. (1969) Recrystallisation and remobilisation in some stratiforms pyrite deposits of the Western Alps. In Remobilisation of ores and minerals (Valera, R., ed.) Assoz. Minerar. Sarda—Inst. Giacim. Minerar. Univ. Cagliari, 12948.Google Scholar

Olesen, N. Ø., Hansen, E. S., Kristensen, L. H., and Thyrsted, T. (1973) A preliminary account of the geology of the Selbu-Tydal area, the Trondheim Region, central Norwegian Caledonides. Leidse Geol. Meded., 49, 259–76.Google Scholar

Ramdohr, P. (1953) Ober Metamorphose und sekun-däire Mobilisierung. Geol. Rundsch. 42, 11–19.Google Scholar

Saager, R. (1966) Erzgeologische Untersuchungen an Kaledonische Blei, Zink und Kupfetfiihrenden Kiesla-gerstiitten in Nord-Rana-District, Nord-Norwegen. Doctoral thesis, ETH Zürich. Ziirich, City-Druck AG, 143 pp.Google Scholar

Stanton, R. L. (1964) Mineral interfaces in stratiform ores. Trans. Inst. Mining Metall., 74, 45–79.Google Scholar

Stanton, R. L. (1972) Ore Petrology. New York, McGraw-Hill, Inter. Ser. Earth Planet. Sci., 713 pp.Google Scholar

Vokes, F. M. (1963) Geological studies on the Caledonian pyritic zinc-lead orebody at Bleikvassli, Nordland, Norway. Norges geol unders., 22, 126 pp.Google Scholar

Vokes, F. M. (1969) A review of the metamorphism of sulphide deposits. Earth Sci. Rev. 5, 99–143.Google Scholar

Vokes, F. M. (1971) Some aspects of the regional metamorphic mobilisation of pre-existing sulphide deposits. Mineral. Deposita, 6, 122–9.Google Scholar

Vokes, F. M. (1973) ‘Ball texture’ in sulphide ores. Geol. Fören. Stockh. Förhl., 95, 403-6.Google Scholar

Wilson, J. R. (1985) The synorogenic Fongen-Hyllingen layered basic complex, Trondheim Region, Norway. In The Caledonide orogen—Scandinavia and related areas (Gee, D. G. and Sturt, B. A., eds.). New York, John Wiley & Sons, 717-24.Google Scholar

Wilson, J. R. and Olesen, N. O. (1975) The form of the FongenHyllingen gabbro complcx, Trondheim Region, Norway. Norsk geol. tidsskr., 55, 423–39.Google Scholar

Wilson, J. R. Hansen, B. T., and Pedersen, S. (1983) Zircon U-Pb evidence for the age of the Fongen-Hyllingen complex, Trondheim Region, Norway. Geol. Fören. Stockh. Förh., 105, 68–70.Google Scholar