A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite | Mineralogical Magazine | Cambridge Core (original) (raw)

Abstract

A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite from Fosso Attici, Sacrofano, Italy was carried out on the basis of electron microprobe analysis in wavelength dispersive mode, singlecrystal X-ray diffraction (at 100 K), Raman and infrared spectroscopy. Thechemical formula of the merlinoite from Fosso Attici is (Na0.37K5.69)Σ=6.06(Mg0.01Ca1.93Ba0.40)Σ=2.34(Fe0.023+Al10.55Si21.38)Σ=31.9O64·19.6H2O,compatible with the ideal chemical formula K6Ca2[Al10Si22O64]·20H2O.

Anisotropic structure refinements confirmed the symmetry and the framework model previously reported (space group Immm, a = 14.066(5),b = 14.111(5), c = 9.943(3) Å at 100 K). Refinement converged with four cationic sites and six H2O sites; refined bond distances of the framework tetrahedra suggest a highly disordered Si/Al-distribution. The Raman spectrum of merlinoite (collected between 100and 4000 cm–1) is dominated by a doublet of bands between 496–422 cm–1, assigned to tetrahedral T–O–T symmetric bending modes. T–O–T antisymmetric stretching is also observed; stretching and bending modes of the H2Omolecules are only clearly visible when using a blue laser. The single-crystal near-infrared spectrum shows a very weak band at 6823 cm–1, assigned to the first overtone of the O–H stretching mode, and a band at 5209 cm–1, due to the combination of H2Ostretching and bending modes. Avery broad and convoluted absorption, extending from 3700 to 3000 cm–1 occurs in the H2O stretching region, while the ν2 bending mode of H2O is found at 1649 cm–1. The powder mid-infraredspectrum of merlinoite between 400–1300 cm–1 is dominated by tetrahedral T–O–T symmetric and antisymmetric stretches. Raman and Fourier-transform infrared spectroscopy spectra of merlinoite and phillipsite provide a quick identification tool for these zeolites,which are often confused due to their close similarity.

References

Alberti, A., Hentschel, G. and Vezzalini, G. (1979) Amicite, a new natural zeolite. Neues Jahrbuch für Mineralogie Monatshefte, 481-488.Google Scholar

Baerlocher, C., Meier, W.M. and Olson, D.H. (2007) Atlas of Zeolite Framework Types, 6th ed. Elsevier, Amsterdam.Google Scholar

Baturin, S.V., Malinovskii, Y.A. and Runovoa, I.B. (1985) Cristalline structure of the low-silica merlinoite from the Kola Peninsula. Mineralogicheskiy Zhurnal, 7, 67–74.Google Scholar

Bellatreccia, F., Della Ventura, G., Libowitzky, E. and Beran, A. (2005) The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study. Physics and Chemistry of Minerals, 32, 65–76.CrossRefGoogle Scholar

Bieniok, A., Bornholdt, K., Brendel, U. and Baur, W.H. (1996) Synthesis and crystal structure of zeolite W, resembling the mineral merlinoite. Journal of Materials Chemistry, 6, 271–275.CrossRefGoogle Scholar

Bruker (2008)APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar

Bu, X., Gier, T.E. and Stucky, G.D. (1998) Hydrothermal synthesis and low temperature crystal structure of an ammonium beryllophosphate with the merlinoite topology. Microporous and Mesoporous Materials, 26, 61–66.CrossRefGoogle Scholar

Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Grice, J.D., Galli, E., Liebau, F., Minato, H., Nikel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmans, E. and Vezzalini, G. (1997) Recommended Nomenclature for Zeolite Minerals: Report of the Subcommittee on Zeolite of the International Mineralogical Association Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 1571–1606.Google Scholar

Della Ventura, G., Di Lisa, A., Marcelli, M., Mottana, A. and Paris, E. (1992) Composition and structural state of alkali feldspars from ejecta in the Roman potassic province, Italy; petrological implications. European Journal of Mineralogy, 4, 411–424.CrossRefGoogle Scholar

Della Ventura, G., Parodi, G.C., Burragato, F. and Mottana, A. (1993) Nuovi dati sulla merlinoite e su zeoliti affini. Rendiconti Lincei, 4, 303–313.Google Scholar

Della Ventura, G., Bellatreccia, F., Parodi, G.C., Cámara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)] [Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713–721.CrossRefGoogle Scholar

Della Ventura, G., Gatta, G.D., Redhammer, G., Bellatreccia, F., Loose, A. and Parodi, G.C. (2009) Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Physics and Chemistry of Minerals, 36, 193–206.CrossRefGoogle Scholar

De Rita, D., Funiciello, R., Rossi, U. and Sposato, A. (1983) Structure and evolution of the Sacrofano Baccano caldera, Sabatini volcanic complex, Rome. Journal of Volcanology and Geothermal Resources, 17, 219–236 CrossRefGoogle Scholar

Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals (http://rruff.info/). Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, Ø03-13.Google Scholar

Dutta, P.K. and Del Barco, B. (1985) Structure-sensitive Raman bands in hydrated zeolite A. Journal of the Chemical Society — Chemical Communications, 1985, 1297–1299.CrossRefGoogle Scholar

Dutta, P.K. and Puri, M. (1987) Synthesis and structure of zeolite ZSM-5: a Raman spectroscopic study. Journal of Physical Chemistry, 91, 4329–4333.CrossRefGoogle Scholar

Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837–838.CrossRefGoogle Scholar

Feng, P., Bu, X. and Stucky, G.D. (1997) Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature, 388, 735–741.CrossRefGoogle Scholar

Flanigen, E.M., Khatami, H. and Szymanski, H.A. (1971) Infrared structural studies of zeolite frameworks. Pp. 201–229 in: Molecular Sieve Zeolites (Flanigen, E.M. and Sand, L.B., editors). Advances in Chemistry, 101. American Chemical Society, Washington DC.Google Scholar

Galli, E., Gottardi, G. and Pongiluppi, D. (1979) The crystal structure of the zeolite merlinoite. Neues Jahrbuch für Mineralogie, Monatshefte, 1–9.Google Scholar

Gatta, G.D., Cappelletti, P., Rotiroti, N., Slebodnick, C. and Rinaldi, R. (2009) New insights into the crystal structure and crystal chemistry of the zeolite phillip-site. American Mineralogist, 94, 190–199.CrossRefGoogle Scholar

Gatta, G.D., Kahlenberg, V., Kaindl, R., Rotiroti, N., Cappelletti, P. and de’ Gennaro, M. (2010) Crystal-structure and low-temperature behavior of “disordered” thomsonite. American Mineralogist, 95, 495–502.CrossRefGoogle Scholar

Gatta, G.D. and Lotti, P. (2011) On the low-temperature behavior of the zeolite gobbinsite: A single-crystal X-ray diffraction study. Microporous and Mesoporous Materials, 143, 467–76.CrossRefGoogle Scholar

Hay, R.L. and Guldman, S.G. (1987) Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35, 449–457.CrossRefGoogle Scholar

Henderson, C.M.B. and Taylor, D. (1977) Infrared spectra of anhydrous members of the sodalite family. Spectrochimica Acta A, 33, 283–290.CrossRefGoogle Scholar

Hentschel, G. (1986) Paulingit und andere seltene Zeolithe in einem gefritteten Sandsteineinschluss im Basalt von Ortenberg (Vogelsberg, Hessen). Geologisches Jahrbuch Hessen, 114, 249–256.Google Scholar

Khomyakov, A.P., Kurova, T.A. and Muravishkaya, G.I. (1981) Merlinoite, first occurrence in the USSR. Transactions of the USSR Academy of Sciences, Earth Science Sections, 256, 172–174.Google Scholar

Kim, S.H., Kim, S.D., Kim, Y.C., Kim, C.S. and Hong, S.B. (2001) Synthesis and characterization of Ga-substituted MER-type zeolites. Microporous and Mesoporous Materials, 42, 121–129.CrossRefGoogle Scholar

Knight, C.L., Williamson, M.A. and Bodnar, R.J. (1989) Raman spectroscopy of zeolites: characterization of natural zeolites with the laser Raman microprobe. Pp. 571-573 in: Microbeam Analysis -1989 (P.E. Russell, editor). San Francisco Press, San Francisco, USA.Google Scholar

Larson, A.C. (1967) Inclusion of secondary extinction in least-squares calculations. Acta Crystallographica, 23, 664–665.CrossRefGoogle Scholar

Mohapatra, B.K and Sahoo, R.K (1987) Merlinoite in manganese nodules from the Indian Ocean. Mineralogical Magazine, 51, 749–750.CrossRefGoogle Scholar

Mozgawa, W (2001) The relation between structure and vibrational spectra of natural zeolites. Journal of Molecular Structure, 596, 129–137.CrossRefGoogle Scholar

Newmann, S., Stolper, E.M. and Epstein, S. (1986) Measurements of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. American Mineralogist, 71, 1527–1541.Google Scholar

Pakhomova, A.S., Armbruster, T., Krivovichev, S.V and Yakovenchuk, V.N. (2014) Dehydration of the zeolite merlinoite from the Khibiny massif, Russia: an in situ temperature-dependent single-crystal X-ray study. European Journal of Mineralogy, 26, 371–380.CrossRefGoogle Scholar

Passaglia, E. (1970) The crystal chemistry of chabazites. American Mineralogist, 55, 1278–1301.Google Scholar

Passaglia, E. and Sheppard, R.A. (2001) The crystal chemistry of zeolites. Pp. 69–116 in: Natural Zeolites: Occurrence, Properties, Application (D.L. Bish and D.W Ming, editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America and Geochemical Society, Washington, USA.Google Scholar

Passaglia, E., Pongiluppi, D. and Rinaldi, R. (1977) Merlinoite, a new mineral of the zeolite group. Neues Jahrbuch für Mineralogie, Monatshefte, 355–364.Google Scholar

Pechar, F. (1983) Infrared reflection of selected natural zeolites. Neues Jahrbuch für Mineralogie, Monatshefte, 335-364.Google Scholar

Sheldrick, G.M. (1997) SHELX-97 - A program for crystal structure refinement. University of Göttingen, Göttingen, Germany. Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.Google Scholar

Sherman, J.D. (1977) Identification and characterization of zeolites synthesized in the K2O-Al2O3-SiO2-H2O system. I. ACS Symposium Series, 40, 30–42.CrossRefGoogle Scholar

Skofteland, B.M., Ellestad, O.H. and Lillerud, K.P. (2001) Potassium merlinoite: crystallization, structural and thermal properties. Microporous and Mesoporous Materials, 43, 61–71.CrossRefGoogle Scholar

Solov'eva, L.P., Borisov, S.V. and Bakakin, YY (1971) New skeletal structure in the crystal structure of barium chloroaluminosilicate BaAlSi2O6(Cl,OH)> Ba2[X]BaCl2[(Si,Al)8O18. Kristallografiya, 16, 1179. Ba2[X]BaCl2[(Si,Al)8O18. Kristallografiya, 16, 1179.' href=https://scholar.google.com/scholar?q=Solov'eva,+L.P.,+Borisov,+S.V.+and+Bakakin,+YY+(1971)+New+skeletal+structure+in+the+crystal+structure+of+barium+chloroaluminosilicate+BaAlSi2O6(Cl,OH)>+Ba2\[X\]BaCl2\[(Si,Al)8O18.+Kristallografiya,+16,+1179.>Google Scholar

Wilson, A.J.C. and Prince, E. (1999) International Tables for Crystallography Vol. C, Mathematical, Physical and Chemical Tables, 2nd ed. Kluwer, Dordrecht, The Netherlands.Google Scholar

Wopenka, B., Freeman, II and Nikischer, T. (1998) Raman spectroscopic identification of fibrous natural zeolites. Applied Spectroscopy, 52, 54–63.CrossRefGoogle Scholar

Yakubovich, O.V., Massa, W., Pekov, I.V. and Kucherinenko, Y.V. (1999) Crystal structure of a Na,K-variety of merlinoite. Crystallographic Report, 44, 776–782.Google Scholar

Zecchina, A., Spoto, G. and Bordiga, S. (2002) Vibrational Spectroscopy of Zeolites. Pp. 3042-3071 in: Handbook of Vibrational Spectroscopy, (J.M. Chalmers and P.R. Griffiths, editors). Vol. 4. John Wiley & Sons Ltd, Chichester, UK.Google Scholar