Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel | Mineralogical Magazine | Cambridge Core (original) (raw)

Abstract

Flamite (Ca,Na,K)2(Si,P)O4 (P63; a = 43.3726(18), c = 6.8270(4) Å; V = 11122.2(9) Å3), a natural analogue of the P,Na,K-doped high-temperature α-Ca2SiO4 modification, is a new mineral from Ca- and Al-rich paralava, an ultrahigh-temperature combustion metamorphic melt rock. The type locality is situated in the southern Hatrurim Basin, the Negev Desert, Israel. Flamite occurs as regular lamellar intergrowths with partially hydrated larnite, together with rock-forming gehlenite, rankinite and Ti-rich andradite, minor ferrian perovskite, magnesioferrite, hematite, and retrograde ettringite and calcium silicate hydrates. The mineral is greyish to yellowish, transparent with a vitreous lustre, non-fluorescent under ultraviolet light and shows no parting or cleavage; Mohs hardness is 5–5½; calculated density is 3.264 g cm–3. The empirical formula of holotype flamite (mean of 21 analyses) is (Ca1.82Na0.09K0.06(Mg,Fe,Sr,Ba)0.02)Σ1.99(Si0.82P0.18)Σ1.00O4. The strongest lines in the powder X-ray diffraction pattern are [d, Å (Iobs)]: 2.713(100), 2.765(44), 2.759(42), 1.762(32), 2.518(29), 2.402(23), 2.897(19), 1.967(18), 2.220(15), 1.813(15). The strongest bands in the Raman spectrum are 170, 260, 520, 538, 850, 863, 885, 952 and 1003 cm–1.

References

Bentor, Y.K. and Vroman, A. (1960) The Geological Map of Israel 1:100000, Sheet 16-Mount Sedom (with explanatory note). Geological Survey of Israel, Jerusalem. Bridge, T.E. (1966) Bredigite, larnite and g-dicalcium silicates from Marble Canyon. American Mineralogist, 51, 1766–1774.Google Scholar

Britvin, S.N., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013) Murashkoite, IMA 2012-071. CNMNC Newsletter No. 15, February 2013, page 8; Mineralogical Magazine, 77, 1–12.Google Scholar

Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2014a) Negevite, IMA 2013-104. CNMNC Newsletter No. 19, February 2014, page 166; Mineralogical Magazine, 78, 165–170.Google Scholar

Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2014b) Halamishite, IMA 2013-105. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165–170.Google Scholar

Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2014c) Zuktamrurite, IMA 2013-107. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165–170.Google Scholar

Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107–124.Google Scholar

Campbell, D.H. (1999) Microscopical Examination and Interpretation of Portland Cement and Clinker. 2nd edition. Portland Cement Association, Skokie, Illinois, USA.Google Scholar

Canberra Industries Inc (2002) Model S506 Interactive Peak Fit, User’s Manual. Canberra Industries Inc, Canberra.Google Scholar

Chesnokov, B., Kotrly, M. and Nisanbajev, T. (1998) Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken-eine reiche Mineralienküche. Mineralien-Welt, 9(3), 54–63.Google Scholar

Chopelas, A. (1991) Single crystal Raman spectra of forsterite, fayalite and monticellite. American Mineralogist, 76, 1101–1109.Google Scholar

Deer, W.A., Howie, R.A. and Zussman, J. (1986) Rock-Forming Minerals. 2nd edition. Longmans, London and New York, pp. 248–255.Google Scholar

Fix, W., Heymann, H. and Heinke, R. (1969) Subsolidus relations in the system 2CaO·SiO2.AlO·P2O5. Journal of the American Ceramic Society-Discussion and Notes, 52, 346–347.CrossRefGoogle Scholar

Fleuscher, M., Cabri, L.J. Chao, G.Y. and Pabst, A. (1978) New mineral names. American Mineralogist, 63, 424–427.Google Scholar

Fukuda, K. (2001) Recent progress in crystal chemistry of belite: intracrystalline microtextures induced by phase transformations and application of remelting reaction to improvement of hydration reactivity. Journal of the Ceramic Society of Japan, 109, 43–48.CrossRefGoogle Scholar

Fukuda, K. and Maki, I. (1989) Orientation of b-Ca2SiO4 solid solution lamellae formed in the host aphase. Cement and Concrete Research, 19, 913–918.CrossRefGoogle Scholar

Heller, L. and Taylor, H.F.W. (1956) Crystallographic Data for the Calcium Silicates. HMSO, London.Google Scholar

Galuskin, E.V., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Dzierżanowski, P. and Murashko, M. (2013a) Aradite, IMA 2013-047. CNMNC Newsletter No. 17, October 2013, p. 3001; Mineralogical Magazine, 77, 2997–3005.Google Scholar

Galuskin, E.V., Gfeller, F., Armbruster, T., Sharygin, V.V., Galuskina, I.O., Krivovichev, S.V., Vapnik, Y., Murashko, M., Dzierżanowski, P. and Wirth, R. (2013b) Fluorkyuygenite, IMA 2013-043. CNMNC Newsletter No. 17, October 2013, page 3000; Mineralogical Magazine, 77, 2997–3005.Google Scholar

Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2013c) Zadovite, IMA 2013-031. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 2695–2709.Google Scholar

Galuskin, E.V., Kusz, J., Gfeller, F., Galuskina, I.O., Vapnik, Y., Dulski, M. and Dzierżanowski, P. (2014) Silicocarnotite, IMA 2013-139. CNMNC Newsletter No. 20, June 2014, p. 553; Mineralogical Magazine, 78, 549–558.Google Scholar

Galuskina, I.O., Vapnik, Y., Prusik, K., Dzierżanowski, P., Murashko, M. and Galuskin, E.V. (2013) Gurimite, IMA 2013-032. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 2695–2709.Google Scholar

Goryainov, S.V., Krylov, A.S., Pan, Y., Madyukov, I.A., Smirnov, M.B. and Vtyurin, A.N. (2012) Raman investigation of hydrostatic and nonhydrostatic compressions of OH-and F-apophyllites up to 8 GPa. Journal of Raman Spectroscopy, 43, 439–447.CrossRefGoogle Scholar

Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A.S., Afanasiev, V.P. and Pokhilenko, N.P. (2014) Raman identification of lonsdaleite in Popigai impactites. Journal of Raman Spectroscopy, 45, 305–313.CrossRefGoogle Scholar

Grapes, R. (2011) Pyrometamorphism. 2nd edition. Springer, Berlin. Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70. Gross, S. (1980) Bentorite. A new mineral from the Hatrurim Area, west of the Dead Sea, Israel. Israel Journal of Earth Sciences, 29, 81–84.Google Scholar

Gross, S. (1984) Occurrence of ye’elimite and ellestadite in an unusual cobble from the “pseudo-conglomerate” of the Hatrurim Basin, Israel. Geological Survey of Israel, Current Research 1983-84. 1–4.Google Scholar

Gross, S. and Heller, L. (1963) A natural occurrence of bayerite. Mineralogical Magazine, 32, 723–724.CrossRefGoogle Scholar

Gobechiya, E.R., Yamnova, N.A., Zadov, A.E. and Gazeev, V.M. (2008) Calcio-olivine g-Ca2SiO4: I. Rietveld refinement of the crystal structure. Crystallography Reports, 53, 404–408.CrossRefGoogle Scholar

McKeown, D.A., Bell, M.I. and Caracas, R. (2010) Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2SiO4). American Mineralogist, 95, 980–986.CrossRefGoogle Scholar

Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.CrossRefGoogle Scholar

Mumme, W.G., Hill, R.J., Bushnell, Wye G. and Segnit, E.R. (1995) Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch für Mineralogie, Abhandlungen, 169, 35–68.Google Scholar

Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, E., Britvin, S.N., Krivovichev, S.V., Polekhovsky, Y.S. and Ivakin, Yu.D. (2011) Barioferrite BaFe+3 12O19 a new magnetoplumbitegroup mineral from Hatrurim Formation, Israel. Geology of Ore Deposits, 53, 558–563.CrossRefGoogle Scholar

Oxford Diffraction (2008) CrysAlis RED (ver. 1.171.35.15). Oxford Diffraction, Abingdon, Oxfordshire, England.Google Scholar

Piriou, B. and McMillan, P. (1983) The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. American Mineralogist, 68, 426–443.Google Scholar

Reverdatto, V.V. (1973) The Facies of Contact Metamorphism. Australian National University, Canberra. Seryotkin, Y.V., Sokol, E.V. and Kokh, S.N. (2012) Natural pseudowollastonite: crystal structure, associated minerals, and geological context. Lithos, 133-135. 75–90.Google Scholar

Sharygin, V.V., Vapnik, Y., Sokol, E.V., Kamenetsky, V.S. and Shagam, R. (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. ACROFI I Program with Abstracts, 2006, pp. 189–192.Google Scholar

Sharygin, V.V., Sokol, E.V. and Vapnik, Y. (2008) Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, 709–726.CrossRefGoogle Scholar

Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+AlO8-a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97–111.CrossRefGoogle Scholar

Sokol, E.V., Novikov, I.S., Zateeva, S.N., Sharygin, V.V. and Vapnik, Y. (2008) Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Doklady Earth Sciences, 420, 608–614.CrossRefGoogle Scholar

Sokol, E., Novikov, I., Zateeva, S., Vapnik, Y., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphic rocks as indicators of fossil mud volcanism: new implications for the origin of the Mottled Zone, Dead Sea rift area. Basin Research, 22, 414–438.CrossRefGoogle Scholar

Sokol, E.V., Kokh, S.N., Vapnik, Y., Thiéry, V. and Korzhova, S. (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. American Mineralogist, 99, 1471–1487.CrossRefGoogle Scholar

Sugiyama, K., Kato, Y. and Mikouch, T. (2010) Structure of nagelschmidtite Ca7Si2P2O16. CD of Abstracts, 20th General Meeting of the IMA, Budapest, pp. 725.Google Scholar

Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 1–21.Google Scholar

Weber, D. and Bischoff, A. (1994) Grossite (CaAl4O7)-a rare phase in terrestial rocks and meteorites. European Journal of Mineralogy, 6, 591–594.CrossRefGoogle Scholar

Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.CrossRefGoogle Scholar

Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E. and Gazeev, V.M. (2011) Crystal structure of larnite b-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallography Reports, 56, 210–220.CrossRefGoogle Scholar

Zadov, A.E., Gazeev, V.M., Pertsev, N.N., Gurbanov, A.G., Gobechiya, E.R., Yamnova, N.A. and Chukanov, N.V. (2009) Calcioolivine, gamma-Ca2SiO4, an old and New Mineral species. Geology of Ore Deposits, 51, 741–749.CrossRefGoogle Scholar