Does neuroinflammation fan the flame in neurodegenerative diseases? (original) (raw)
References
Rivest S: Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009, 9 (6): 429-39. CASPubMed Google Scholar
Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC: Debate: "is increasing neuroinflammation beneficial for neural repair?". J Neuroimmune Pharmacol. 2006, 1 (3): 195-211. PubMed Google Scholar
Popovich PG, Longbrake EE: Can the immune system be harnessed to repair the CNS?. Nat Rev Neurosci. 2008, 9 (6): 481-93. CASPubMed Google Scholar
Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007, 208 (1): 1-25. PubMed CentralCASPubMed Google Scholar
Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005, 76 (2): 77-98. CASPubMed Google Scholar
McGeer EG, McGeer PL: The role of anti-inflammatory agents in Parkinson's disease. CNS Drugs. 2007, 21 (10): 789-97. CASPubMed Google Scholar
Mrak RE, Griffin WS: Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005, 26 (3): 349-54. CASPubMed Google Scholar
Nagatsu T, Sawada M: Cellular and molecular mechanisms of Parkinson's disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol. 2006, 26 (4-6): 781-802. CASPubMed Google Scholar
Tansey MG, Wyss-Coray T: Cytokines in CNS Inflammation and Disease. Central Nervous System Diseases and Inflammation, T.E.C. Edited by: Lane M, Bergmann C, Wyss-Coray T. 2008, Springer: New York, 59-106. Google Scholar
Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG, Carson MJ: Differential gene expression in LPS/IFNgamma activated microglia and macrophages: in vitro versus in vivo. J Neurochem. 2009, 109 (Suppl 1): 117-25. PubMed CentralCASPubMed Google Scholar
Nee LE, Polinsky RJ, Eldridge R, Weingartner H, Smallberg S, Ebert M: A family with histologically confirmed Alzheimer's disease. Arch Neurol. 1983, 40 (4): 203-8. CASPubMed Google Scholar
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991, 349 (6311): 704-6. CASPubMed Google Scholar
Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ: Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature. 1992, 360 (6405): 672-4. CASPubMed Google Scholar
Cai XD, Golde TE, Younkin SG: Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science. 1993, 259 (5094): 514-6. CASPubMed Google Scholar
Lopera F, Ardilla A, Martinez A, Madrigal L, Arango-Viana JC, Lemere CA, Arango-Lasprilla JC, Hincapie L, Arcos-Burgos M, Ossa JE, Behrens IM, Norton J, Lendon C, Goate AM, Ruiz-Linares A, Rosselli M, Kosik KS: Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA. 1997, 277 (10): 793-9. CASPubMed Google Scholar
Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L, Hincapie L, Arango JC, Anthony DC, Koo EH, Goate AM, Selkoe DJ: The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med. 1996, 2 (10): 1146-50. CASPubMed Google Scholar
Whalen BM, Selkoe DJ, Hartley DM: Small non-fibrillar assemblies of amyloid beta-protein bearing the Arctic mutation induce rapid neuritic degeneration. Neurobiol Dis. 2005, 20 (2): 254-66. CASPubMed Google Scholar
McGeer PL, Itagaki S, Tago H, McGeer EG: Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett. 1987, 79 (1-2): 195-200. CASPubMed Google Scholar
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T: Inflammation and Alzheimer's disease. Neurobiol Aging. 2000, 21 (3): 383-421. PubMed CentralCASPubMed Google Scholar
Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ: The significance of neuroinflammation in understanding Alzheimer's disease. J Neural Transm. 2006, 113 (11): 1685-95. CASPubMed Google Scholar
Griffin WS: Inflammation and neurodegenerative diseases. Am J Clin Nutr. 2006, 83 (2): 470S-474S. CASPubMed Google Scholar
Hoozemans JJ, Veerhuis R, Rozemuller JM, Eikelenboom P: Neuroinflammation and regeneration in the early stages of Alzheimer's disease pathology. Int J Dev Neurosci. 2006, 24 (2-3): 157-65. CASPubMed Google Scholar
McGeer EG, McGeer PL: Inflammatory processes in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2003, 27 (5): 741-9. CASPubMed Google Scholar
Wyss-Coray T, Mucke L: Inflammation in neurodegenerative disease--a double-edged sword. Neuron. 2002, 35 (3): 419-32. CASPubMed Google Scholar
McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, Hong J, Das P, Golde TE, LaFerla FM, Oddo S, Blesch A, Tansey MG: Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis. 2009, 34 (1): 163-77. PubMed CentralCASPubMed Google Scholar
Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A: Neuroinflammation in Alzheimer's disease and prion disease. Glia. 2002, 40 (2): 232-9. CASPubMed Google Scholar
Bate C, Veerhuis R, Eikelenboom P, Williams A: Microglia kill amyloid-beta1-42 damaged neurons by a CD14-dependent process. Neuroreport. 2004, 15 (9): 1427-30. CASPubMed Google Scholar
Ard MD, Cole GM, Wei J, Mehrle AP, Fratkin JD: Scavenging of Alzheimer's amyloid beta-protein by microglia in culture. J Neurosci Res. 1996, 43 (2): 190-202. CASPubMed Google Scholar
Kopec KK, Carroll RT: Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J Neurochem. 1998, 71 (5): 2123-31. CASPubMed Google Scholar
Shaffer LM, Dority MD, Gupta-Bansal R, Frederickson RC, Younkin SG, Brunden KR: Amyloid beta protein (A beta) removal by neuroglial cells in culture. Neurobiol Aging. 1995, 16 (5): 737-45. CASPubMed Google Scholar
Koenigsknecht-Talboo J, Landreth GE: Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005, 25 (36): 8240-9. CASPubMed Google Scholar
Sheng JG, Griffin WS, Royston MC, Mrak RE: Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer's disease. Neuropathol Appl Neurobiol. 1998, 24 (4): 278-83. PubMed CentralCASPubMed Google Scholar
Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM: Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol. 1998, 152 (1): 307-17. PubMed CentralCASPubMed Google Scholar
Mackenzie IR, Hao C, Munoz DG: Role of microglia in senile plaque formation. Neurobiol Aging. 1995, 16 (5): 797-804. CASPubMed Google Scholar
Flick DA, Gifford GE: Production of tumor necrosis factor in unprimed mice: mechanism of endotoxin-mediated tumor necrosis. Immunobiology. 1986, 171 (4-5): 320-8. CASPubMed Google Scholar
Qiao X, Cummins DJ, Paul SM: Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci. 2001, 14 (3): 474-82. CASPubMed Google Scholar
Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE: Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003, 14 (1): 133-45. CASPubMed Google Scholar
Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM: Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci. 2005, 25 (39): 8843-53. CASPubMed Google Scholar
Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L: Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease. Nature. 1997, 389 (6651): 603-6. CASPubMed Google Scholar
Harris-White ME, Chu T, Balverde Z, Sigel JJ, Flanders KC, Frautschy SA: Effects of transforming growth factor-beta (isoforms 1-3) on amyloid-beta deposition, inflammation, and cell targeting in organotypic hippocampal slice cultures. J Neurosci. 1998, 18 (24): 10366-74. CASPubMed Google Scholar
Kitamura Y, Shimohama S, Koike H, Kakimura J, Matsuoka Y, Nomura Y, Gebicke-Haerter PJ, Taniguchi T: Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains. Biochem Biophys Res Commun. 1999, 254 (3): 582-6. CASPubMed Google Scholar
Lukiw WJ, Bazan NG: Neuroinflammatory signaling upregulation in Alzheimer's disease. Neurochem Res. 2000, 25 (9-10): 1173-84. CASPubMed Google Scholar
Lieberman J, Schleissner L, Tachiki KH, Kling AS: Serum alpha 1-antichymotrypsin level as a marker for Alzheimer-type dementia. Neurobiol Aging. 1995, 16 (5): 747-53. CASPubMed Google Scholar
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T: Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med. 2007, 13 (11): 1359-62. CASPubMed Google Scholar
Craft JM, Watterson DM, Van Eldik LJ: Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006, 53 (5): 484-90. PubMed Google Scholar
Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, Pericak-Vance MA, Saunders AM: Delayed onset of Alzheimer's disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging. 1995, 16 (4): 523-30. CASPubMed Google Scholar
Stewart WF, Kawas C, Corrada M, Metter EJ: Risk of Alzheimer's disease and duration of NSAID use. Neurology. 1997, 48 (3): 626-32. CASPubMed Google Scholar
Mackenzie IR, Munoz DG: Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology. 1998, 50 (4): 986-90. CASPubMed Google Scholar
Vlad SC, Miller DR, Kowall NW, Felson DT: Protective effects of NSAIDs on the development of Alzheimer disease. Neurology. 2008, 70 (19): 1672-7. PubMed CentralCASPubMed Google Scholar
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM: Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci. 2000, 20 (15): 5709-14. CASPubMed Google Scholar
Kukar T, Prescott S, Eriksen JL, Holloway V, Murphy MP, Koo EH, Golde TE, Nicolle MM: Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci. 2007, 8: 54- PubMed CentralPubMed Google Scholar
Launer L: Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer's disease: dissecting the epidemiological evidence. Drugs. 2003, 63 (8): 731-9. PubMed Google Scholar
McGeer PL, McGeer EG: NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging. 2007, 28 (5): 639-47. CASPubMed Google Scholar
van Gool WA, Aisen PS, Eikelenboom P: Anti-inflammatory therapy in Alzheimer's disease: is hope still alive?. J Neurol. 2003, 250 (7): 788-92. CASPubMed Google Scholar
Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA: Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci. 2008, 28 (25): 6333-41. PubMed CentralCASPubMed Google Scholar
Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, Masliah E: Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc Natl Acad Sci USA. 2002, 99 (16): 10837-42. PubMed CentralCASPubMed Google Scholar
Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE: Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci. 2000, 20 (2): 558-67. CASPubMed Google Scholar
Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WS: In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging. 1996, 17 (5): 761-6. PubMed CentralCASPubMed Google Scholar
Remarque EJ, Bollen EL, Weverling-Rijnsburger AW, Laterveer JC, Blauw GJ, Westendorp RG: Patients with Alzheimer's disease display a pro-inflammatory phenotype. Exp Gerontol. 2001, 36 (1): 171-6. CASPubMed Google Scholar
Lynch MA: Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1 beta?. Prog Neurobiol. 1998, 56 (5): 571-89. CASPubMed Google Scholar
Das P, Smithson LA, Price RW, Holloway VM, Levites Y, Chakrabarty P, Golde TE: Interleukin-1 receptor 1 knockout has no effect on amyloid deposition in Tg2576 mice and does not alter efficacy following Abeta immunotherapy. J Neuroinflammation. 2006, 3: 17- PubMed CentralPubMed Google Scholar
Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S, Hashimoto Y: Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem. 2008, 104 (5): 1387-93. CASPubMed Google Scholar
Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P: Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999, 400 (6740): 173-7. CASPubMed Google Scholar
Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW: A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 2000, 408 (6815): 982-5. CASPubMed Google Scholar
Lemere CA, Maron R, Selkoe DJ, Weiner HL: Nasal vaccination with beta-amyloid peptide for the treatment of Alzheimer's disease. DNA Cell Biol. 2001, 20 (11): 705-11. CASPubMed Google Scholar
Lemere CA, Spooner ET, Leverone JF, Mori C, Clements JD: Intranasal immunotherapy for the treatment of Alzheimer's disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants. Neurobiol Aging. 2002, 23 (6): 991-1000. CASPubMed Google Scholar
Gandy S, DeMattos RB, Lemere CA, Heppner FL, Leverone J, Aguzzi A, Ershler WB, Dai J, Fraser P, St George Hyslop P, Holtzman DM, Walker LC, Keller ET: Alzheimer's Abeta vaccination of rhesus monkeys (Macaca mulatta). Mech Ageing Dev. 2004, 125 (2): 149-51. CASPubMed Google Scholar
Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D, Selkoe DJ, Palmour RM, Ervin FR: Alzheimer's disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. Am J Pathol. 2004, 165 (1): 283-97. PubMed CentralCASPubMed Google Scholar
Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D, Seubert P, Schenk D, Holmes C: Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol. 2006, 65 (11): 1040-8. CASPubMed Google Scholar
Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO: Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003, 9 (4): 448-52. CASPubMed Google Scholar
Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJ, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM: Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron. 2003, 38 (4): 547-54. CASPubMed Google Scholar
Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C: Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003, 61 (1): 46-54. CASPubMed Google Scholar
Koenigsknecht-Talboo J, Meyer-Luehmann M, Parsadanian M, Garcia-Alloza M, Finn MB, Hyman BT, Bacskai BJ, Holtzman DM: Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice. J Neurosci. 2008, 28 (52): 14156-64. PubMed CentralCASPubMed Google Scholar
Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000, 6 (8): 916-9. CASPubMed Google Scholar
Lee EB, Leng LZ, Zhang B, Kwong L, Trojanowski JQ, Abel T, Lee VM: Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem. 2006, 281 (7): 4292-9. CASPubMed Google Scholar
Lemere CA, Maier M, Peng Y, Jiang L, Seabrook TJ: Novel Abeta immunogens: is shorter better?. Curr Alzheimer Res. 2007, 4 (4): 427-36. CASPubMed Google Scholar
Lemere CA: Developing novel immunogens for a safe and effective Alzheimer's disease vaccine. Prog Brain Res. 2009, 175: 83-93. PubMed CentralCASPubMed Google Scholar
Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C, Ben-Shlomo Y, Dickson DW, Lang AE, Chesselet MF, Langston WJ, Di Monte DA, Gasser T, Hagg T, Hardy J, Jenner P, Melamed E, Myers RH, Parker D, Price DL: The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J Neuropathol Exp Neurol. 2007, 66 (4): 251-7. CASPubMed Google Scholar
Banati RB, Daniel SE, Blunt SB: Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov Disord. 1998, 13 (2): 221-7. CASPubMed Google Scholar
Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ: In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis. 2006, 21 (2): 404-12. CASPubMed Google Scholar
Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC: FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci. 1999, 19 (9): 3440-7. CASPubMed Google Scholar
McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988, 38 (8): 1285-91. CASPubMed Google Scholar
Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ: TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson's disease in ventricular cerebrospinal fluid. Exp Neurol. 1996, 142 (2): 313-22. CASPubMed Google Scholar
Ferger B, Leng A, Mura A, Hengerer B, Feldon J: Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem. 2004, 89 (4): 822-33. CASPubMed Google Scholar
Rousselet E, Callebert J, Parain K, Joubert C, Hunot S, Hartmann A, Jacque C, Perez-Diaz F, Cohen-Salmon C, Launay JM, Hirsch EC: Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol. 2002, 177 (1): 183-92. CASPubMed Google Scholar
Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O'Callaghan JP: Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. Faseb J. 2002, 16 (11): 1474-1476. CASPubMed Google Scholar
Barcia C, de Pablos V, Bautista-Hernandez V, Sanchez-Bahillo A, Bernal I, Fernandez-Villalba E, Martin J, Banon R, Fernandez-Barreiro A, Herrero MT: Increased plasma levels of TNF-alpha but not of IL1-beta in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism Relat Disord. 2005, 11 (7): 435-439. PubMed Google Scholar
Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem. 2002, 81 (6): 1285-1297. CASPubMed Google Scholar
Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, Carvey PM: In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord. 2002, 17 (1): 116-124. PubMed Google Scholar
McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR, Tansey KE, Tansey MG: Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci. 2006, 26 (37): 9365-9375. PubMed CentralCASPubMed Google Scholar
McCoy MK, Ruhn KA, Martinez TN, McAlpine FE, Blesch A, Tansey MG: Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther. 2008, 16 (9): 1572-1579. PubMed CentralCASPubMed Google Scholar
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC: Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci Lett. 1994, 172 (1-2): 151-154. CASPubMed Google Scholar
Tartaglia LA, Rothe M, Hu YF, Goeddel DV: Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell. 1993, 73 (2): 213-216. CASPubMed Google Scholar
Aloe L, Fiore M: TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett. 1997, 238 (1-2): 65-68. CASPubMed Google Scholar
Carvey PM, Chen EY, Lipton JW, Tong CW, Chang QA, Ling ZD: Intra-parenchymal injection of tumor necrosis factor-alpha and interleukin 1-beta produces dopamine neuron loss in the rat. J Neural Transm. 2005, 112 (5): 601-612. CASPubMed Google Scholar
Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM: Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res. 2002, 133 (1): 27-35. CASPubMed Google Scholar
Ling ZD, Potter ED, Lipton JW, Carvey PM: Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol. 1998, 149 (2): 411-423. CASPubMed Google Scholar
McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol. 2001, 169 (2): 219-230. CASPubMed Google Scholar
Hakansson A, Westberg L, Nilsson S, Buervenich S, Carmine A, Holmberg B, Sydow O, Olson L, Johnels B, Eriksson E, et al: Investigation of genes coding for inflammatory components in Parkinson's disease. Mov Disord. 2005, 20 (5): 569-573. PubMed Google Scholar
Hakansson A, Westberg L, Nilsson S, Buervenich S, Carmine A, Holmberg B, Sydow O, Olson L, Johnels B, Eriksson E, et al: Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet. 2005, 133 (1): 88-92. Google Scholar
Kruger R, Hardt C, Tschentscher F, Jackel S, Kuhn W, Muller T, Werner J, Woitalla D, Berg D, Kuhnl N, et al: Genetic analysis of immunomodulating factors in sporadic Parkinson's disease. J Neural Transm. 2000, 107 (5): 553-562. CASPubMed Google Scholar
Nishimura M, Kuno S, Kaji R, Yasuno K, Kawakami H: Glutathione-S-transferase-1 and interleukin-1beta gene polymorphisms in Japanese patients with Parkinson's disease. Mov Disord. 2005, 20 (7): 901-902. PubMed Google Scholar
Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kaji R, Kuno S: Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson's disease. Neurosci Lett. 2001, 311 (1): 1-4. CASPubMed Google Scholar
Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007, 8 (1): 57-69. CASPubMed Google Scholar
Ito S, Sawada M, Haneda M, Ishida Y, Isobe K: Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway. Neurosci Res. 2006, 56 (3): 294-299. CASPubMed Google Scholar
Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med. 2006, 38 (4): 333-347. CASPubMed Google Scholar
Sawada M, Imamura K, Nagatsu T: Role of cytokines in inflammatory process in Parkinson's disease. J Neural Transm Suppl. 2006, 70: 373-381. CASPubMed Google Scholar
Group THsDCR: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993, 72: 971-983. Google Scholar
Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Bjorkqvist M, Petersen A, Jackson GS, Isaacs JD, Kristiansen M, Bates GP, et al: Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. Journal of proteome research. 2007, 6 (7): 2833-2840. CASPubMed Google Scholar
Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, et al: Regional and cellular gene expression changes in human Huntington's disease brain. Hum Mol Genet. 2006, 15 (6): 965-977. CASPubMed Google Scholar
Singhrao SK, Neal JW, Morgan BP, Gasque P: Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp Neurol. 1999, 159 (2): 362-376. CASPubMed Google Scholar
Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, et al: A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med. 2008, 205 (8): 1869-1877. PubMed CentralPubMed Google Scholar
Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P: Microglial activation in presymptomatic Huntington's disease gene carriers. Brain. 2007, 130 (Pt 7): 1759-1766. PubMed Google Scholar
Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P: Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006, 66 (11): 1638-1643. CASPubMed Google Scholar
Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M: Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001, 60 (2): 161-172. CASPubMed Google Scholar
Cleren C, Calingasan NY, Chen J, Beal MF: Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem. 2005, 94 (4): 995-1004. CASPubMed Google Scholar
Norflus F, Nanje A, Gutekunst CA, Shi G, Cohen J, Bejarano M, Fox J, Ferrante RJ, Hersch SM: Anti-inflammatory treatment with acetylsalicylate or rofecoxib is not neuroprotective in Huntington's disease transgenic mice. Neurobiol Dis. 2004, 17 (2): 319-325. CASPubMed Google Scholar
Sugars KL, Rubinsztein DC: Transcriptional abnormalities in Huntington disease. Trends Genet. 2003, 19 (5): 233-238. CASPubMed Google Scholar
Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH: Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci. 2004, 24 (37): 7999-8008. CASPubMed Google Scholar
Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH: Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004, 55 (2): 221-235. CASPubMed Google Scholar
Kawamata T, Akiyama H, Yamada T, McGeer PL: Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol. 1992, 140 (3): 691-707. PubMed CentralCASPubMed Google Scholar
Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB: Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004, 15 (3): 601-609. CASPubMed Google Scholar
Henkel JS, Beers DR, Siklos L, Appel SH: The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS. Mol Cell Neurosci. 2006, 31 (3): 427-437. CASPubMed Google Scholar
McManus CM, Liu JS, Hahn MT, Hua LL, Brosnan CF, Berman JW, Lee SC: Differential induction of chemokines in human microglia by type I and II interferons. Glia. 2000, 29 (3): 273-280. CASPubMed Google Scholar
Kuhle J, Lindberg RL, Regeniter A, Mehling M, Steck AJ, Kappos L, Czaplinski A: Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009, 16 (6): 771-774. CASPubMed Google Scholar
Keizman D, Rogowski O, Berliner S, Ish-Shalom M, Maimon N, Nefussy B, Artamonov I, Drory VE: Low-grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurol Scand. 2009, 119 (6): 383-389. CASPubMed Google Scholar
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993, 362 (6415): 59-62. CASPubMed Google Scholar
Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, et al: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 2003, 302 (5642): 113-117. CASPubMed Google Scholar
Lino MM, Schneider C, Caroni P: Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci. 2002, 22 (12): 4825-4832. CASPubMed Google Scholar
Pramatarova A, Laganiere J, Roussel J, Brisebois K, Rouleau GA: Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci. 2001, 21 (10): 3369-3374. CASPubMed Google Scholar
Sargsyan SA, Monk PN, Shaw PJ: Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia. 2005, 51 (4): 241-253. PubMed Google Scholar
Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH: Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2006, 103 (43): 16021-16026. PubMed CentralCASPubMed Google Scholar
Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW: Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006, 312 (5778): 1389-1392. CASPubMed Google Scholar
Weydt P, Yuen EC, Ransom BR, Moller T: Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia. 2004, 48 (2): 179-182. PubMed Google Scholar
Ferri A, Nencini M, Battistini S, Giannini F, Siciliano G, Casali C, Damiano MG, Ceroni M, Chio A, Rotilio G, et al: Activity of protein phosphatase calcineurin is decreased in sporadic and familial amyotrophic lateral sclerosispatients. J Neurochem. 2004, 90 (5): 1237-1242. CASPubMed Google Scholar
Elliott JL: Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res Mol Brain Res. 2001, 95 (1-2): 172-178. CASPubMed Google Scholar
Yoshihara T, Ishigaki S, Yamamoto M, Liang Y, Niwa J, Takeuchi H, Doyu M, Sobue G: Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 2002, 80 (1): 158-167. CASPubMed Google Scholar
Poloni M, Facchetti D, Mai R, Micheli A, Agnoletti L, Francolini G, Mora G, Camana C, Mazzini L, Bachetti T: Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett. 2000, 287 (3): 211-214. CASPubMed Google Scholar
West M, Mhatre M, Ceballos A, Floyd RA, Grammas P, Gabbita SP, Hamdheydari L, Mai T, Mou S, Pye QN, et al: The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem. 2004, 91 (1): 133-143. CASPubMed Google Scholar
Tikka TM, Vartiainen NE, Goldsteins G, Oja SS, Andersen PM, Marklund SL, Koistinaho J: Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain. 2002, 125 (Pt 4): 722-731. PubMed Google Scholar
Nguyen MD, Julien JP, Rivest S: Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1beta in neurodegeneration. Ann Neurol. 2001, 50 (5): 630-639. CASPubMed Google Scholar