Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma (original) (raw)
Bianco C, Jamialahmadi O, Pelusi S, Baselli G, Dongiovanni P, Zanoni I, et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J Hepatol. 2021;74(4):775–82. ArticleCASPubMedPubMed Central Google Scholar
Toh MR, Wong EYT, Wong SH, Ng AWT, Loo L-H, Chow PK-H, et al. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology. 2023;164(5):766–82. ArticlePubMed Google Scholar
Fujiwara N, Kubota N, Crouchet E, Koneru B, Marquez CA, Jajoriya AK, et al. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med. 2022;14(650):eabo4474. ArticleCASPubMedPubMed Central Google Scholar
Li L, Wang H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett. 2016;379(2):191–7. ArticleCASPubMed Google Scholar
Whitfield JB, Schwantes-An TH, Darlay R, Aithal GP, Atkinson SR, Bataller R, et al. A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. J Hepatol. 2022;76(2):275–82. ArticleCASPubMed Google Scholar
Nahon P, Bamba-Funck J, Layese R, Trépo E, Zucman-Rossi J, Cagnot C, et al. Integrating genetic variants into clinical models for hepatocellular carcinoma risk stratification in cirrhosis. J Hepatol. 2023;78(3):584–95. ArticleCASPubMed Google Scholar
Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW, et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat Cancer. 2022;3(4):386–401. ArticlePubMedPubMed Central Google Scholar
Singal AG, Zhang E, Narasimman M, Rich NE, Waljee AK, Hoshida Y, et al. HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: a meta-analysis. J Hepatol. 2022;77(1):128–39. ArticlePubMedPubMed Central Google Scholar
Kansagara D, Papak J, Pasha AS, O’Neil M, Freeman M, Relevo R, et al. Screening for hepatocellular carcinoma in chronic liver disease: a systematic review. Ann Intern Med. 2014;161(4):261–9. ArticlePubMed Google Scholar
Jiang HY, Chen J, Xia CC, Cao LK, Duan T, Song B. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol. 2018;24(22):2348–62. ArticlePubMedPubMed Central Google Scholar
Li L, Hu Y, Han J, Li Q, Peng C, Zhou J. Clinical application of liver imaging reporting and data system for characterizing liver neoplasms: a meta-analysis. Diagnostics (Basel). 2021;11(2):323. ArticlePubMed Google Scholar
Brown ZJ, Tsilimigras DI, Ruff SM, Mohseni A, Kamel IR, Cloyd JM, et al. Management of hepatocellular carcinoma: a review. JAMA Surg. 2023;158(4):410–20. ArticlePubMed Google Scholar
Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723–50. ArticlePubMed Google Scholar
Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology. 2018;154(6):1706-18.e1. ArticleCASPubMed Google Scholar
Terzi E, Ayuso C, Piscaglia F, Bruix J. Liver imaging reporting and data system: review of pros and cons. Semin Liver Dis. 2022;42(1):104–11. ArticlePubMed Google Scholar
Sørensen JB, Klee M, Palshof T, Hansen HH. Performance status assessment in cancer patients. An inter-observer variability study. Br J Cancer. 1993;67(4):773–5. ArticlePubMedPubMed Central Google Scholar
Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg. 1964;1:1–85. CASPubMed Google Scholar
Pugh RNH, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 2005;60(8):646–9. Article Google Scholar
Kumada T, Toyoda H, Tada T, Yasuda S, Tanaka J. Changes in background liver function in patients with hepatocellular carcinoma over 30 years: comparison of Child-Pugh classification and albumin bilirubin grade. Liver Cancer. 2020;9(5):518–28. ArticleCASPubMedPubMed Central Google Scholar
Dominguez DA, Wong P, Melstrom LG. Existing and emerging biomarkers in hepatocellular carcinoma: relevance in staging, determination of minimal residual disease, and monitoring treatment response: a narrative review. Hepatobil Surg Nutr. 2023;13(1):39–55. Article Google Scholar
Tateishi R, Uchino K, Fujiwara N, Takehara T, Okanoue T, Seike M, et al. A nationwide survey on non-B, non-C hepatocellular carcinoma in Japan: 2011–2015 update. J Gastroenterol. 2019;54(4):367–76. ArticleCASPubMed Google Scholar
Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550–8. ArticlePubMed Google Scholar
Kuo YH, Wang JH, Hung CH, Rau KM, Wu IP, Chen CH, et al. Albumin-Bilirubin grade predicts prognosis of HCC patients with sorafenib use. J Gastroenterol Hepatol. 2017;32(12):1975–81. ArticleCASPubMed Google Scholar
Pinato DJ, Sharma R, Allara E, Yen C, Arizumi T, Kubota K, et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J Hepatol. 2017;66(2):338–46. ArticlePubMed Google Scholar
Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681–93. ArticlePubMed Google Scholar
Hackl C, Schlitt HJ, Renner P, Lang SA. Liver surgery in cirrhosis and portal hypertension. World J Gastroenterol. 2016;22(9):2725–35. ArticleCASPubMedPubMed Central Google Scholar
Berardi G, Morise Z, Sposito C, Igarashi K, Panetta V, Simonelli I, et al. Development of a nomogram to predict outcome after liver resection for hepatocellular carcinoma in Child-Pugh B cirrhosis. J Hepatol. 2020;72(1):75–84. ArticlePubMed Google Scholar
Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv238–55. ArticleCASPubMed Google Scholar
Szpakowski JL, Drasin TE, Lyon LL. Rate of seeding with biopsies and ablations of hepatocellular carcinoma: a retrospective cohort study. Hepatol Commun. 2017;1(9):841–51. ArticlePubMedPubMed Central Google Scholar
Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology. 2023;78(1):319–62. PubMed Google Scholar
Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2022;19(10):670–81. ArticlePubMed Google Scholar
Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer. 2019;18(1):114. ArticlePubMedPubMed Central Google Scholar
Li J, Han X, Yu XN, Xu ZZ, Yang GS, Liu BQ, et al. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. J Exp Clin Cancer Res. 2018;37(1):213. ArticlePubMedPubMed Central Google Scholar
Galle PR, Foerster F, Kudo M, Chan SL, Llovet JM, Qin S, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39(12):2214–29. ArticlePubMed Google Scholar
Lok AS, Lai CL. alpha-Fetoprotein monitoring in Chinese patients with chronic hepatitis B virus infection: role in the early detection of hepatocellular carcinoma. Hepatology. 1989;9(1):110–5. ArticleCASPubMed Google Scholar
Hanif H, Ali MJ, Susheela AT, Khan IW, Luna-Cuadros MA, Khan MM, et al. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World J Gastroenterol. 2022;28(2):216–29. ArticleCASPubMedPubMed Central Google Scholar
Gambarin-Gelwan M, Wolf DC, Shapiro R, Schwartz ME, Min AD. Sensitivity of commonly available screening tests in detecting hepatocellular carcinoma in cirrhotic patients undergoing liver transplantation. Am J Gastroenterol. 2000;95(6):1535–8. ArticleCASPubMed Google Scholar
Trevisani F, D’Intino PE, Morselli-Labate AM, Mazzella G, Accogli E, Caraceni P, et al. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol. 2001;34(4):570–5. ArticleCASPubMed Google Scholar
Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther. 2009;30(1):37–47. ArticleCASPubMedPubMed Central Google Scholar
Lok AS, Sterling RK, Everhart JE, Wright EC, Hoefs JC, Di Bisceglie AM, et al. Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology. 2010;138(2):493–502. ArticleCASPubMed Google Scholar
Di Bisceglie AM, Hoofnagle JH. Elevations in serum alpha-fetoprotein levels in patients with chronic hepatitis B. Cancer. 1989;64(10):2117–20. ArticlePubMed Google Scholar
Chen J, Wu M, Gong J, Liu Z, He G, Zhu H, et al. Influence of alanine transaminase levels on alpha-fetoprotein for predicting hepatocellular carcinoma in patients with hepatitis B infection. Biomed Res Int. 2020;2020:2043715. ArticlePubMedPubMed Central Google Scholar
Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–80. ArticlePubMed Google Scholar
Sterling RK, Jeffers L, Gordon F, Venook AP, Reddy KR, Satomura S, et al. Utility of Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein and des-gamma-carboxy prothrombin, alone or in combination, as biomarkers for hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2009;7(1):104–13. ArticleCASPubMed Google Scholar
Liu S, Sun L, Yao L, Zhu H, Diao Y, Wang M, et al. Diagnostic performance of AFP, AFP-L3, or PIVKA-II for hepatitis C virus-associated hepatocellular carcinoma: a multicenter analysis. J Clin Med. 2022;11(17):5075. ArticleCASPubMedPubMed Central Google Scholar
Weitz IC, Liebman HA. Des-gamma-carboxy (abnormal) prothrombin and hepatocellular carcinoma: a critical review. Hepatology. 1993;18(4):990–7. ArticleCASPubMed Google Scholar
Kim DY, Toan BN, Tan CK, Hasan I, Setiawan L, Yu ML, et al. Utility of combining PIVKA-II and AFP in the surveillance and monitoring of hepatocellular carcinoma in the Asia-Pacific region. Clin Mol Hepatol. 2023;29(2):277–92. ArticlePubMedPubMed Central Google Scholar
Seo SI, Kim HS, Kim WJ, Shin WG, Kim DJ, Kim KH, et al. Diagnostic value of PIVKA-II and alpha-fetoprotein in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 2015;21(13):3928–35. ArticleCASPubMedPubMed Central Google Scholar
Wang AE, Leven EA, Grinspan LT, Villanueva A. Novel biomarkers and strategies for HCC diagnosis and care. Clin Liver Dis (Hoboken). 2024;23(1):e0152. PubMed Google Scholar
Johnson PJ, Pirrie SJ, Cox TF, Berhane S, Teng M, Palmer D, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomark Prev. 2014;23(1):144–53. ArticleCAS Google Scholar
Singal AG, Tayob N, Mehta A, Marrero JA, El-Serag H, Jin Q, et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology. 2022;75(3):541–9. ArticleCASPubMed Google Scholar
El-Serag HB, Kanwal F, Davila JA, Kramer J, Richardson P. A new laboratory-based algorithm to predict development of hepatocellular carcinoma in patients with hepatitis C and cirrhosis. Gastroenterology. 2014;146(5):1249-55.e1. ArticleCASPubMed Google Scholar
Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125(1):89–97. ArticleCASPubMed Google Scholar
Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology. 2006;131(6):1758–67. ArticleCASPubMed Google Scholar
Wang XY, Degos F, Dubois S, Tessiore S, Allegretta M, Guttmann RD, et al. Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol. 2006;37(11):1435–41. ArticleCASPubMed Google Scholar
Saber MA, AbdelHafiz SM, Khorshed FE, Aboushousha TS, Hamdy HE, Seleem MI, et al. Differential expression of Glypican-3 and Insulin-Like growth factor-II mRNAs and Alpha-Fetoprotein and Ki-67 markers in HCV related hepatocellular carcinomas in Egyptian patients. Asian Pac J Cancer Prev. 2017;18(1):121. PubMedPubMed Central Google Scholar
Wang W, Zhao L-J, Wang Y, Tao Q-Y, Feitelson MA, Zhao P, et al. Application of HBx-induced anti-URGs as early warning biomarker of cirrhosis and HCC. Cancer Biomark. 2012;11(1):29–39. ArticleCAS Google Scholar
Abdelgawad IA, Mossallam GI, Radwan NH, Elzawahry HM, Elhifnawy NM. Can Glypican3 be diagnostic for early hepatocellular carcinoma among Egyptian patients? Asian Pac J Cancer Prev. 2013;14(12):7345–9. ArticlePubMed Google Scholar
Nault JC, Guyot E, Laguillier C, Chevret S, Ganne-Carrie N, N’Kontchou G, et al. Serum proteoglycans as prognostic biomarkers of hepatocellular carcinoma in patients with alcoholic cirrhosis. Cancer Epidemiol Biomarkers Prev. 2013;22(8):1343–52. ArticleCASPubMed Google Scholar
Morales-Ibanez O, Domínguez M, Ki SH, Marcos M, Chaves JF, Nguyen-Khac E, et al. Human and experimental evidence supporting a role for osteopontin in alcoholic hepatitis. Hepatology. 2013;58(5):1742–56. ArticleCASPubMed Google Scholar
Abu El Makarem MA, Abdel-Aleem A, Ali A, Saber R, Shatat M, Rahem DA, et al. Diagnostic significance of plasma osteopontin in hepatitis C virus-related hepatocellular carcinoma. Ann Hepatol. 2011;10(3):296–305. ArticlePubMed Google Scholar
Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012;13(8):817–26. ArticleCASPubMed Google Scholar
Zhu M, Zheng J, Wu F, Kang B, Liang J, Heskia F, et al. OPN is a promising serological biomarker for hepatocellular carcinoma diagnosis. J Med Virol. 2020;92(12):3596–603. ArticleCASPubMed Google Scholar
Gehrmann M, Cervello M, Montalto G, Cappello F, Gulino A, Knape C, et al. Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Front Immunol. 2014;5:307. ArticlePubMedPubMed Central Google Scholar
Wang B, Lan T, Xiao H, Chen Z-H, Wei C, Chen L-F, et al. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int. 2021;21(1):286. ArticlePubMedPubMed Central Google Scholar
Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, et al. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology. 2003;37(1):198–207. ArticleCASPubMed Google Scholar
Mohamed SA, Tealeb A-SMI. The role of heat shock protein 70 and glypican 3 expression in early diagnosis of hepatocellular carcinoma. Egypt J Pathol. 2022;42(2):112–6. ArticleCAS Google Scholar
Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, et al. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol. 2005;43(6):1007–12. ArticleCASPubMed Google Scholar
Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59(12):1687–93. ArticleCASPubMed Google Scholar
Pang BY, Leng Y, Wang X, Wang YQ, Jiang LH. A meta-analysis and of clinical values of 11 blood biomarkers, such as AFP, DCP, and GP73 for diagnosis of hepatocellular carcinoma. Ann Med. 2023;55(1):42–61. ArticleCASPubMed Google Scholar
Huang F, Guo J, Zhao N, Hou M, Gai X, Yang S, et al. PTEN deficiency potentiates HBV-associated liver cancer development through augmented GP73/GOLM1. J Transl Med. 2024;22(1):254. ArticleCASPubMedPubMed Central Google Scholar
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, et al. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol. 2019;12(1):48. ArticlePubMedPubMed Central Google Scholar
Wu Y, Park KJ, Deighan C, Amaya P, Miller B, Pan Q, et al. Multiparameter evaluation of the heterogeneity of circulating tumor cells using integrated RNA in situ hybridization and immunocytochemical analysis. Front Oncol. 2016;6:234. ArticlePubMedPubMed Central Google Scholar
Vona G, Estepa L, Béroud C, Damotte D, Capron F, Nalpas B, et al. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology. 2004;39(3):792–7. ArticlePubMed Google Scholar
Qi L-N, Xiang B-D, Wu F-X, Ye J-Z, Zhong J-H, Wang Y-Y, et al. Circulating tumor cells undergoing EMT provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma. Cancer Res. 2018;78(16):4731–44. ArticleCASPubMed Google Scholar
Guo W, Sun Y-F, Shen M-N, Ma X-L, Wu J, Zhang C-Y, et al. Circulating tumor cells with stem-like phenotypes for diagnosis, prognosis, and therapeutic response evaluation in hepatocellular carcinoma. Clin Cancer Res. 2018;24(9):2203–13. ArticleCASPubMed Google Scholar
Coumans FAW, Doggen CJM, Attard G, de Bono JS, Terstappen L. All circulating EpCAM+CK+CD45- objects predict overall survival in castration-resistant prostate cancer. Ann Oncol. 2010;21(9):1851–7. ArticleCASPubMed Google Scholar
Sun YF, Xu Y, Yang XR, Guo W, Zhang X, Qiu SJ, et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology. 2013;57(4):1458–68. ArticleCASPubMed Google Scholar
Guo W, Yang XR, Sun YF, Shen MN, Ma XL, Wu J, et al. Clinical significance of EpCAM mRNA-positive circulating tumor cells in hepatocellular carcinoma by an optimized negative enrichment and qRT-PCR-based platform. Clin Cancer Res. 2014;20(18):4794–805. ArticleCASPubMed Google Scholar
Zhao H, Ling Y, He J, Dong J, Mo Q, Wang Y, et al. Potential targets and therapeutics for cancer stem cell-based therapy against drug resistance in hepatocellular carcinoma. Drug Resist Updates. 2024;74:101084. ArticleCAS Google Scholar
Okajima W, Komatsu S, Ichikawa D, Miyamae M, Ohashi T, Imamura T, et al. Liquid biopsy in patients with hepatocellular carcinoma: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol. 2017;23(31):5650–68. ArticlePubMedPubMed Central Google Scholar
Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun. 2022;13(1):4594. ArticleCASPubMedPubMed Central Google Scholar
Sun Y, Wu P, Zhang Z, Wang Z, Zhou K, Song M, et al. Integrated multi-omics profiling to dissect the spatiotemporal evolution of metastatic hepatocellular carcinoma. Cancer Cell. 2024;42(1):135-56.e17. ArticleCASPubMed Google Scholar
Rostami A, Lambie M, Yu CW, Stambolic V, Waldron JN, Bratman SV. Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. Cell Rep. 2020;31(13):107830. ArticleCASPubMed Google Scholar
Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538):eaaw3616. ArticleCASPubMed Google Scholar
Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112(40):E5503–12. ArticleCASPubMedPubMed Central Google Scholar
Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379(18):1754–65. ArticleCASPubMed Google Scholar
Yinzhong W, Miaomiao W, Xiaoxue T, Qian W, Meng Q, Junqiang L. Diagnostic accuracy of circulating-free DNA for the determination of hepatocellular carcinoma: a systematic review and meta-analysis. Expert Rev Mol Diagn. 2023;23(1):63–9. ArticlePubMed Google Scholar
Zinkova A, Brynychova I, Svacina A, Jirkovska M, Korabecna M. Cell-free DNA from human plasma and serum differs in content of telomeric sequences and its ability to promote immune response. Sci Rep. 2017;7(1):2591. ArticlePubMedPubMed Central Google Scholar
Martignano F. Cell-free DNA: an overview of sample types and isolation procedures. Methods Mol Biol. 2019;1909:13–27. ArticleCASPubMed Google Scholar
van Dessel LF, Beije N, Helmijr JC, Vitale SR, Kraan J, Look MP, et al. Application of circulating tumor DNA in prospective clinical oncology trials - standardization of preanalytical conditions. Mol Oncol. 2017;11(3):295–304. ArticlePubMedPubMed Central Google Scholar
Ako S, Nouso K, Kinugasa H, Matsushita H, Terasawa H, Adachi T, et al. Human telomerase reverse transcriptase gene promoter mutation in serum of patients with hepatocellular carcinoma. Oncology. 2020;98(5):311–7. ArticleCASPubMed Google Scholar
Xiong Y, Xie CR, Zhang S, Chen J, Yin ZY. Detection of a novel panel of somatic mutations in plasma cell-free DNA and its diagnostic value in hepatocellular carcinoma. Cancer Manag Res. 2019;11:5745–56. ArticleCASPubMedPubMed Central Google Scholar
Cai ZX, Chen G, Zeng YY, Dong XQ, Lin MJ, Huang XH, et al. Circulating tumor DNA profiling reveals clonal evolution and real-time disease progression in advanced hepatocellular carcinoma. Int J Cancer. 2017;141(5):977–85. ArticleCASPubMed Google Scholar
An Y, Guan YF, Xu YP, Han YX, Wu C, Bao CH, et al. The diagnostic and prognostic usage of circulating tumor DNA in operable hepatocellular carcinoma. Am J Transl Res. 2019;11(10):6462–74. CASPubMedPubMed Central Google Scholar
Tao KS, Bian ZY, Zhang Q, Guo X, Yin C, Wang Y, et al. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma. Ebiomedicine. 2020;56:102811. ArticlePubMedPubMed Central Google Scholar
Alunni-Fabbroni M, Weber S, Öcal O, Seidensticker M, Mayerle J, Malfertheiner P, et al. Circulating cell-free DNA combined to magnetic resonance imaging for early detection of HCC in patients with liver cirrhosis. Cancers. 2021;13(3):521. ArticleCASPubMedPubMed Central Google Scholar
Cai Z, Zhang J, He Y, Xia L, Dong X, Chen G, et al. Liquid biopsy by combining 5-hydroxymethylcytosine signatures of plasma cell-free DNA and protein biomarkers for diagnosis and prognosis of hepatocellular carcinoma. Esmo Open. 2021;6(1):100021. ArticleCASPubMedPubMed Central Google Scholar
Cai ZX, Chen G, Zeng YY, Dong XQ, Li ZL, Huang YB, et al. Comprehensive liquid profiling of circulating tumor DNA and protein biomarkers in long-term follow-up patients with hepatocellular carcinoma. Clin Cancer Res. 2019;25(17):5284–94. ArticleCASPubMed Google Scholar
Chae H, Sung PS, Choi H, Kwon A, Kang D, Kim Y, et al. Targeted next-generation sequencing of plasma cell-free DNA in Korean patients with hepatocellular carcinoma. Ann Lab Med. 2021;41(2):198–206. ArticleCASPubMedPubMed Central Google Scholar
Chen G, Peng F, Dong XQ, Cai ZX, Li ZL, He L, et al. Identification of tumor mutations in plasma based on mutation variant frequency change (MVFC). Mol Oncol. 2023;17(9):1871–83. ArticleCASPubMedPubMed Central Google Scholar
Chen H, Sun LY, Zheng HQ, Zhang QF, Jin XM. Total serum DNA and DNA integrity: diagnostic value in patients with hepatitis B virus-related hepatocellular carcinoma. Pathology. 2012;44(4):318–24. ArticleCASPubMed Google Scholar
Cowzer D, White JB, Chou JF, Chen PJ, Kim TH, Khalil DN, et al. Targeted molecular profiling of circulating cell-free DNA in patients with advanced hepatocellular carcinoma. JCO Precis Oncol. 2023;7:e2300272. ArticlePubMed Google Scholar
Ge ZH, Helmijr JCA, Jansen M, Boor PPC, Noordam L, Peppelenbosch M, et al. Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Transl Oncol. 2021;14(7):101073. ArticleCASPubMedPubMed Central Google Scholar
Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF, et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B virus associated hepatocellular carcinoma. Int J Med Sci. 2014;11(2):164–71. ArticleCASPubMedPubMed Central Google Scholar
Higuera M, Vargas-Accarino E, Torrens M, Gregori J, Salcedo MT, Martínez-Campreciós J, et al. Ultra deep sequencing of circulating cell-free DNA as a potential tool for hepatocellular carcinoma management. Cancers. 2022;14(16):3875. ArticleCASPubMedPubMed Central Google Scholar
Hu N, Fan XP, Fan YC, Chen LY, Qiao CY, Han LY, et al. Hypomethylated ubiquitin-conjugating enzyme2 Q1 (UBE2Q1) gene promoter in the serum is a promising biomarker for hepatitis B virus-associated hepatocellular carcinoma. Tohoku J Exp Med. 2017;242(2):93–100. ArticleCASPubMed Google Scholar
Huang A, Zhang X, Zhou SL, Cao Y, Huang XW, Fan J, et al. Plasma circulating cell-free DNA integrity as a promising biomarker for diagnosis and surveillance in patients with hepatocellular carcinoma. J Cancer. 2016;7(13):1798–803. ArticleCASPubMedPubMed Central Google Scholar
Huang A, Zhang X, Zhou SL, Cao Y, Huang XW, Fan J, et al. Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity. J Cancer. 2016;7(13):1907–14. ArticleCASPubMedPubMed Central Google Scholar
Huang GM, Krocker JD, Kirk JL, Merwat SN, Ju H, Soloway RD, et al. Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma. Clin Chem Lab Med. 2014;52(6):899–909. ArticleCASPubMedPubMed Central Google Scholar
Jiao JJ, Sanchez J, Thompson EJ, Mao XZ, McCormick JB, Fisher-Hoch SP, et al. Somatic mutations in circulating cell-free DNA and risk for hepatocellular carcinoma in Hispanics. Int J Mol Sci. 2021;22(14):7411. ArticleCASPubMedPubMed Central Google Scholar
Kandimalla R, Xu JF, Link A, Matsuyama T, Yamamura K, Parker MI, et al. EpiPanGI Dx: a cell-free DNA methylation fingerprint for the early detection of gastrointestinal cancers. Clin Cancer Res. 2021;27(22):6135–44. ArticleCASPubMedPubMed Central Google Scholar
Kim SC, Kim DW, Cho EJ, Lee JY, Kim J, Kwon C, et al. A circulating cell-free DNA methylation signature for the detection of hepatocellular carcinoma. Mol Cancer. 2023;22(1):164. ArticleCASPubMedPubMed Central Google Scholar
Kumar S, Nadda N, Paul S, Gamanagatti S, Dash NR, Vanamail P, et al. Evaluation of the cell-free DNA integrity index as a liquid biopsy marker to differentiate hepatocellular carcinoma from chronic liver disease. Front Mol Biosci. 2022;9:1024193. ArticleCASPubMedPubMed Central Google Scholar
Kunadirek P, Chuaypen N, Jenjaroenpun P, Wongsurawat T, Pinjaroen N, Sirichindakul P, et al. Cell-free DNA analysis by whole-exome sequencing for hepatocellular carcinoma: a pilot study in Thailand. Cancers. 2021;13(9):2229. ArticleCASPubMedPubMed Central Google Scholar
Labgaa I, Villacorta-Martin C, D’Avola D, Craig AJ, von Felden J, Martins SN, et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene. 2018;37(27):3740–52. ArticleCASPubMedPubMed Central Google Scholar
Lee HW, Kim E, Cho KJ, Park HJ, Seo J, Lee H, et al. Applications of molecular barcode sequencing for the detection of low-frequency variants in circulating tumour DNA from hepatocellular carcinoma. Liver Int. 2022;42(10):2317–26. ArticleCASPubMed Google Scholar
Liang WJ, Xu ZG, Kong FY, Huang X, Xiao YX, Zhou W, et al. Circulating tumour cell combined with DNA methylation for early detection of hepatocellular carcinoma. Front Genet. 2022;13:1065693. ArticleCASPubMedPubMed Central Google Scholar
Liao WJ, Yang HY, Xu HF, Wang YN, Ge PL, Ren JJ, et al. Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in hepatocellular carcinoma patients by targeted deep sequencing. Oncotarget. 2016;7(26):40481–90. ArticlePubMedPubMed Central Google Scholar
Ma XY, Wang Z, Wang SY, Tian Y, Xie B, Li J, et al. The assessment of circulating tumor DNA associated with Wnt/β-catenin signaling pathway as a diagnostic tool for liver cancer: a systematic review and meta-analysis. Expert Rev Anticancer Ther. 2024;24(3–4):155–67. ArticleCASPubMed Google Scholar
Matsumae T, Kodama T, Myojin Y, Maesaka K, Sakamori R, Takuwa A, et al. Circulating cell-free DNA profiling predicts the therapeutic outcome in advanced hepatocellular carcinoma patients treated with combination immunotherapy. Cancers. 2022;14(14):3367. ArticleCASPubMedPubMed Central Google Scholar
Muraoka M, Maekawa S, Katoh R, Komiyama Y, Nakakuki N, Takada H, et al. Usefulness of cell-free human telomerase reverse transcriptase mutant DNA quantification in blood for predicting hepatocellular carcinoma treatment efficacy. Hepatol Commun. 2021;5(11):1927–38. ArticleCASPubMedPubMed Central Google Scholar
Nakatsuka T, Nakagawa H, Hayata Y, Wake T, Yamada T, Kinoshita MN, et al. Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma. J Gastroenterol. 2021;56(5):456–69. ArticleCASPubMed Google Scholar
Nguyen VC, Nguyen TH, Phan TH, Tran THT, Pham TTT, Ho TD, et al. Fragment length profiles of cancer mutations enhance detection of circulating tumor DNA in patients with early-stage hepatocellular carcinoma. BMC Cancer. 2023;23(1):233. ArticleCASPubMedPubMed Central Google Scholar
Ono A, Fujimoto A, Yamamoto Y, Akamatsu S, Hiraga N, Imamura M, et al. Circulating tumor DNA analysis for liver cancers and its usefulness as a liquid biopsy. Cell Mol Gastroenterol Hepatol. 2015;1(5):516–34. ArticlePubMedPubMed Central Google Scholar
Oversoe SK, Clement MS, Weber B, Gronbæk H, Hamilton-Dutoit SJ, Sorensen BS, et al. Combining tissue and circulating tumor DNA increases the detection rate of a CTNNB1 mutation in hepatocellular carcinoma. BMC Cancer. 2021;21(1):376. ArticleCASPubMedPubMed Central Google Scholar
Papatheodoridi A, Chatzigeorgiou A, Chrysavgis L, Lembessis P, Loglio A, Facchetti F, et al. Circulating cell-free DNA species affect the risk of hepatocellular carcinoma in treated chronic hepatitis B patients. J Viral Hepatitis. 2021;28(3):464–74. ArticleCAS Google Scholar
Qu CF, Wang YT, Wang P, Chen K, Wang MJ, Zeng HM, et al. Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy. Proc Natl Acad Sci U S A. 2019;116(13):6308–12. ArticleCASPubMedPubMed Central Google Scholar
Villar S, Le Roux-Goglin E, Gouas DA, Plymoth A, Ferro G, Boniol M, et al. Seasonal variation in TP53 _R249S_-mutated serum DNA with aflatoxin exposure and hepatitis B virus infection. Environ Health Perspect. 2011;119(11):1635–40. ArticleCASPubMedPubMed Central Google Scholar
Wang J, Yang L, Diao YJ, Liu JY, Li JJ, Li R, et al. Circulating tumour DNA methylation in hepatocellular carcinoma diagnosis using digital droplet PCR. J Int Med Res. 2021;49(3):300060521992962. ArticleCASPubMed Google Scholar
Wang JH, Qin Y, Li B, Sun ZL, Yang B. Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary hepatocellular carcinoma patients. Clin Biochem. 2006;39(4):344–8. ArticleCASPubMed Google Scholar
Wang P, Song QQ, Ren J, Zhang WL, Wang YT, Zhou L, et al. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med. 2022;14(672):eabp8704. ArticleCASPubMed Google Scholar
Wu T, Fan R, Bai J, Yang Z, Qian YS, Du LT, et al. The development of a cSMART-based integrated model for hepatocellular carcinoma diagnosis. J Hematol Oncol. 2023;16(1):1. ArticleCASPubMedPubMed Central Google Scholar
Yu X, Lei XZ. Application of the multi-omics liquid biopsy method M2P-HCC in early liver cancer screening for high-risk individuals with hepatitis B-related liver cancer. Diagnostics. 2023;13(15):2484. ArticleCASPubMedPubMed Central Google Scholar
Zhang A, Lee TJ, Jain S, Su YH, editors. Urine as an alternative to blood for cancer liquid biopsy and precision medicine. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - Human Genomics; 2018 Dec 03–06. Madrid: IEEE (Institute of Electrical and Electronics Engineers); 2018. https://doi.org/10.1109/BIBM.2018.8621453.
Zhang HK, Dong PL, Fan HL, Liang H, Zhang K, Zhao YQ, et al. Gene body hypomethylation of pyroptosis-related genes NLRP7, NLRP2, and NLRP3 facilitate non-invasive surveillance of hepatocellular carcinoma. Funct Integr Genomics. 2023;23(2):198. ArticleCASPubMed Google Scholar
Zhang HK, Dong PL, Guo SC, Tao CC, Chen W, Zhao WM, et al. Hypomethylation in HBV integration regions aids non-invasive surveillance to hepatocellular carcinoma by low-pass genome-wide bisulfite sequencing. BMC Med. 2020;18(1):200. ArticleCASPubMedPubMed Central Google Scholar
Zhao YT, Zhao L, Jin HF, Xie Y, Chen LYH, Zhang W, et al. Plasma methylated GNB4 and Riplet as a novel dual-marker panel for the detection of hepatocellular carcinoma. Epigenetics. 2024;19(1):2299044. ArticlePubMed Google Scholar
Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VW-S, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci. 2015;112(11):E1317–25. ArticleCASPubMedPubMed Central Google Scholar
Jiang P, Sun K, Tong YK, Cheng SH, Cheng THT, Heung MMS, et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc Natl Acad Sci. 2018;115(46):E10925–33. ArticleCASPubMedPubMed Central Google Scholar
Zeng Y, Hu S, Luo Y, He K. Exosome cargos as biomarkers for diagnosis and prognosis of hepatocellular carcinoma. Pharmaceutics. 2023;15(9):2365. ArticleCASPubMedPubMed Central Google Scholar
Guo S, Hu CX, Zhai XY, Sun D. Circular RNA 0006602 in plasma exosomes: a new potential diagnostic biomarker for hepatocellular carcinoma. Am J Transl Res. 2021;13(6):6001–15. CASPubMedPubMed Central Google Scholar
Lin J, Lin WS, Bai YN, Liao YL, Lin QY, Chen LF, et al. Identification of exosomal hsa-miR-483-5p as a potential biomarker for hepatocellular carcinoma via microRNA expression profiling of tumor-derived exosomes. Exp Cell Res. 2022;417(2):113232. ArticleCASPubMed Google Scholar
Rui T, Zhang XB, Guo JF, Xiang AZ, Tang N, Liu J, et al. Serum-exosome-derived miRNAs serve as promising biomarkers for HCC diagnosis. Cancers. 2023;15(1):205. ArticleCAS Google Scholar
Li L-M, Hu Z-B, Zhou Z-X, Chen X, Liu F-Y, Zhang J-F, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70(23):9798–807. ArticleCASPubMed Google Scholar
Chen WB, Jiang JJ, Gong L, Shu ZY, Xiang DR, Zhang XJ, et al. Hepatitis B virus P protein initiates glycolytic bypass in HBV-related hepatocellular carcinoma via a FOXO3/miRNA-30b-5p/MINPP1 axis. J Exp Clin Cancer Res. 2021;40(1):1–8. ArticlePubMedPubMed Central Google Scholar
El-Maraghy SA, Adel O, Zayed N, Yosry A, El-Nahaas SM, Gibriel AA. Circulatory miRNA-484, 524, 615 and 628 expression profiling in HCV mediated HCC among Egyptian patients; implications for diagnosis and staging of hepatic cirrhosis and fibrosis. J Adv Res. 2020;22:57–66. ArticleCASPubMed Google Scholar
Zhang L, Liu Q, Guo Y, Tian L, Chen K, Bai D, et al. DNA-based molecular classifiers for the profiling of gene expression signatures. J Nanobiotechnol. 2024;22(1):189. ArticleCAS Google Scholar
Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206. ArticleCASPubMed Google Scholar
Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 2023;16(1):67. ArticleCASPubMedPubMed Central Google Scholar
Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–64. ArticleCASPubMed Google Scholar
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets. J Hepatol. 2017;67(3):603–19. ArticleCASPubMed Google Scholar
Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, et al. Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron. 2015;74:214–21. ArticleCASPubMed Google Scholar
Xie H, Ma H, Zhou D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int. 2013;2013:136106. ArticlePubMedPubMed Central Google Scholar
Kim SS, Baek GO, Ahn HR, Sung S, Seo CW, Cho HJ, et al. Serum small extracellular vesicle-derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma. Mol Oncol. 2020;14(10):2646–59. ArticleCASPubMedPubMed Central Google Scholar
Kim SS, Baek GO, Son JA, Ahn HR, Yoon MK, Cho HJ, et al. Early detection of hepatocellular carcinoma via liquid biopsy: panel of small extracellular vesicle-derived long noncoding RNAs identified as markers. Mol Oncol. 2021;15(10):2715–31. ArticleCASPubMedPubMed Central Google Scholar
Li Y, Zhao J, Yu S, Wang Z, He X, Su Y, et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem. 2019;65(6):798–808. ArticleCASPubMed Google Scholar
Zhu Q, Xie J, Mei W, Zeng C. Methylated circulating tumor DNA in hepatocellular carcinoma: a comprehensive analysis of biomarker potential and clinical implications. Cancer Treat Rev. 2024;128:102763. ArticleCASPubMed Google Scholar
Abou Zeid AA, El-Sayed ET, Ahdy JK, Tawfik MR. Ras association domain family 1A gene promoter methylation as a biomarker for chronic viral hepatitis C-related hepatocellular carcinoma. Cureus J Med Sci. 2023;15(9):e45687. Google Scholar
Araújo OC, Rosa AS, Fernandes A, Niel C, Villela-Nogueira CA, Pannain V, et al. RASSF1A and DOK1 promoter methylation levels in hepatocellular carcinoma, cirrhotic and non-cirrhotic liver, and correlation with liver cancer in Brazilian patients. PLoS One. 2016;11(4):e0153796. ArticlePubMedPubMed Central Google Scholar
Azab NI, Abd El Kariem HM, Mowafi T, Fouad HF, El Abd AM. Blood Ras-association domain family 1 A gene methylation status in some liver diseases. Life Sci J Acta Zhengzhou Univ Overseas Ed. 2011;8(2):531–9. Google Scholar
Chan KCA, Lai PBS, Mok TSK, Chan HLY, Ding CM, Yeung SW, et al. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin Chem. 2008;54(9):1528–36. ArticleCASPubMed Google Scholar
Cheishvili D, Wong C, Karim MM, Kibria MG, Jahan N, Das PC, et al. A high-throughput test enables specific detection of hepatocellular carcinoma. Nat Commun. 2023;14(1):3306. ArticleCASPubMedPubMed Central Google Scholar
Chen LM, Xiang L, Sun WJ, Zhai YJ, Gao S, Fan YC, et al. Diagnostic value of the hypomethylation of the WISP1 promoter in patients with hepatocellular carcinoma associated with hepatitis B virus. Tohoku J Exp Med. 2020;252(4):297–307. ArticleCASPubMed Google Scholar
Cheng JM, Wei DK, Ji Y, Chen LL, Yang LG, Li G, et al. Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Med. 2018;10(1):42. ArticlePubMedPubMed Central Google Scholar
Di JZ, Han XD, Gu WY, Wang Y, Zheng Q, Zhang P, et al. Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma. J Zhejiang Univ Sci B. 2011;12(10):805–11. ArticleCASPubMedPubMed Central Google Scholar
Dong XY, He H, Zhang WY, Yu DJ, Wang XJ, Chen YM. Combination of serum RASSF1A methylation and AFP is a promising non-invasive biomarker for HCC patient with chronic HBV infection. Diagn Pathol. 2015;10:133. ArticlePubMedPubMed Central Google Scholar
Dou CY, Fan YC, Cao CJ, Yang Y, Wang K. Sera DNA Methylation of CDH1, DNMT3b and ESR1 promoters as biomarker for the early diagnosis of hepatitis B virus-related hepatocellular carcinoma. Dig Dis Sci. 2016;61(4):1130–8. ArticleCASPubMed Google Scholar
El-Bendary M, Nour D, Arafa M, Neamatallah M. Methylation of tumour suppressor genes RUNX3, RASSF1A and E-Cadherin in HCV-related liver cirrhosis and hepatocellular carcinoma. Br J Biomed Sci. 2020;77(1):35–40. ArticlePubMed Google Scholar
Elsewify WA, Hassan EA, Mekky MA, Abd El-Rehim A, Sayed Z, Malek MOA, et al. Usefulness of circulating methylated p16 as a noninvasive molecular biomarker for hepatitis C-related hepatocellular carcinoma with normal serum alpha-fetoprotein levels. Int J Gen Med. 2020;13:147–55. ArticleCASPubMedPubMed Central Google Scholar
Funderburk K, Bang-Christensen SR, Miller BF, Tan H, Margolin G, Petrykowska HM, et al. Evaluating stacked methylation markers for blood-based multicancer detection. Cancers. 2023;15(19):4826. ArticleCASPubMedPubMed Central Google Scholar
Gonçalves E, Gonçalves-Reis M, Pereira-Leal JB, Cardoso J. DNA methylation fingerprint of hepatocellular carcinoma from tissue and liquid biopsies. Sci Rep. 2022;12(1):11512. ArticlePubMedPubMed Central Google Scholar
Guo P, Zheng HL, Li YH, Li YT, Xiao Y, Zheng J, et al. Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA. Clin Epigenetics. 2023;15(1):2. ArticleCASPubMedPubMed Central Google Scholar
Hu L, Chen G, Yu HP, Qiu XQ. Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol Int. 2010;4(1):423–32. ArticlePubMedPubMed Central Google Scholar
Huang F, Yang GW, Jiang HQ, Chen XN, Yang YH, Yu Q, et al. Role of plasma methylated SEPT9 for predicting microvascular invasion and tumor proliferation in hepatocellular carcinoma. Technol Cancer Res Treat. 2022;21:15330338221144510. ArticleCASPubMedPubMed Central Google Scholar
Huang WQ, Li T, Yang WL, Chai XJ, Chen KF, Wei L, et al. Analysis of DNA methylation in plasma for monitoring hepatocarcinogenesis. Genet Test Mol Biomarkers. 2015;19(6):295–302. ArticleCASPubMedPubMed Central Google Scholar
Huang ZH, Hu Y, Hua D, Wu YY, Song MX, Cheng ZH. Quantitative analysis of multiple methylated genes in plasma for the diagnosis and prognosis of hepatocellular carcinoma. Exp Mol Pathol. 2011;91(3):702–7. ArticleCASPubMed Google Scholar
Jain S, Chang TT, Hamilton JP, Lin SY, Lin YJ, Evans AA, et al. Methylation of the CpG sites only on the sense strand of the APC gene is specific for hepatocellular carcinoma. PLoS One. 2011;6(11):e26799. ArticleCASPubMedPubMed Central Google Scholar
Ji XF, Fan YC, Gao S, Yang Y, Zhang JJ, Wang K. MT1M and MT1G promoter methylation as biomarkers for hepatocellular carcinoma. World J Gastroenterol. 2014;20(16):4723–9. ArticleCASPubMedPubMed Central Google Scholar
Jiang CG, Chen Q, Wu LN, Wang G, Ma JZ. The innovative regularity and role of p16 methylation in blood during HCC development. J Cancer. 2018;9(11):1925–31. ArticlePubMedPubMed Central Google Scholar
Johnson AM, Dudek JM, Edwards DK, Myers TA, Joseph P, Laffin JJ, et al. Analytical validation of a novel multi-target blood-based test to detect hepatocellular carcinoma. Expert Rev Mol Diagn. 2021;21(11):1245–52. ArticleCASPubMed Google Scholar
Kotoh Y, Suehiro Y, Saeki I, Hoshida T, Maeda M, Iwamoto T, et al. Novel liquid biopsy test based on a sensitive methylated SEPT9 assay for diagnosing hepatocellular carcinoma. Hepatol Commun. 2020;4(3):461–70. ArticleCASPubMedPubMed Central Google Scholar
Li BL, Huang H, Huang RH, Zhang W, Zhou GP, Wu Z, et al. SEPT9 gene methylation as a noninvasive marker for hepatocellular carcinoma. Dis Markers. 2020;2020:6289063. ArticlePubMedPubMed Central Google Scholar
Li F, Fan YC, Gao S, Sun FK, Yang Y, Wang K. Methylation of serum insulin-like growth factor-binding protein 7 promoter in hepatitis B virus-associated hepatocellular carcinoma. Genes Chromosom Cancer. 2014;53(1):90–7. ArticlePubMed Google Scholar
Liu HH, Fang Y, Wang JW, Yuan XD, Fan YC, Gao S, et al. Hypomethylation of the cyclin D1 promoter in hepatitis B virus-associated hepatocellular carcinoma. Medicine (Baltimore). 2020;99(20):e20326. ArticleCASPubMed Google Scholar
Liu XY, Fan YC, Gao S, Zhao J, Chen LY, Li F, et al. Methylation of SOX1 and VIM promoters in serum as potential biomarkers for hepatocellular carcinoma. Neoplasma. 2017;64(5):745–53. ArticleCASPubMed Google Scholar
Liu ZJ, Huang Y, Wei L, He JY, Liu QY, Yu XQ, et al. Combination of LINE-1 hypomethylation and RASSF1A promoter hypermethylation in serum DNA is a non-invasion prognostic biomarker for early recurrence of hepatocellular carcinoma after curative resection. Neoplasma. 2017;64(5):795–802. ArticleCASPubMed Google Scholar
Lubecka K, Flower K, Beetch M, Qiu J, Kurzava L, Buvala H, et al. Loci-specific differences in blood DNA methylation in HBV-negative populations at risk for hepatocellular carcinoma development. Epigenetics. 2018;13(6):605–26. ArticlePubMedPubMed Central Google Scholar
Ma JX, Jin JP, Lu HS, Zhang J, Li YL, Cai XF. Exonuclease 1 is a potential diagnostic and prognostic biomarker in hepatocellular carcinoma. Front Mol Biosci. 2022;9:889414. ArticleCASPubMedPubMed Central Google Scholar
Oussalah A, Rischer S, Bensenane M, Conroy G, Filhine-Tresarrieu P, Debard R, et al. Plasma m_SEPT9_: a novel circulating cell-free DNA-based epigenetic biomarker to diagnose hepatocellular carcinoma. EBioMedicine. 2018;30:138–47. ArticleCASPubMedPubMed Central Google Scholar
Pasha HF, Mohamed RH, Radwan MI. RASSF1A and SOCS1 genes methylation status as a noninvasive marker for hepatocellular carcinoma. Cancer Biomark. 2019;24(2):241–7. ArticleCASPubMed Google Scholar
Qian Y, Wang JW, Fang Y, Yuan XD, Fan YC, Gao S, et al. Measurement of cyclin D2 (CCND2) gene promoter methylation in plasma and peripheral blood mononuclear cells and alpha-fetoprotein levels in patients with hepatitis B virus-associated hepatocellular carcinoma. Med Sci Monit. 2020;26:e927444. ArticleCASPubMedPubMed Central Google Scholar
Qiao CY, Li F, Teng Y, Zhao J, Hu N, Fan YC, et al. Aberrant GSTP1 promoter methylation predicts poor prognosis of acute-on-chronic hepatitis B pre-liver failure. Clin Exp Med. 2018;18(1):51–62. ArticleCASPubMed Google Scholar
Qiu G, Fan JC, He YS. 5′ CpG island methylation analysis identifies the MAGE-A1 and MAGE-A3 genes as potential markers of HCC. Clin Biochem. 2006;39(3):259–66. ArticleCASPubMed Google Scholar
Shitani M, Sasaki S, Akutsu N, Takagi H, Suzuki H, Nojima M, et al. Genome-wide analysis of DNA methylation identifies novel cancer-related genes in hepatocellular carcinoma. Tumor Biology. 2012;33(5):1307–17. ArticleCASPubMed Google Scholar
Sultan MQ, Charfeddine B, Al-Salih ARH. Evaluation of the diagnostic performance of Alpha-1-Antitrypsin in early detection of hepatocellular carcinoma. Cell Mol Biol (Noisy-le-grand). 2023;69(14):177–85. ArticlePubMed Google Scholar
Sun FK, Sun Q, Fan YC, Gao S, Zhao J, Li F, et al. Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma after hepatectomy. J Gastroenterol Hepatol. 2016;31(2):484–92. ArticleCASPubMed Google Scholar
Tan SH, Ida H, Lau QC, Goh BC, Chieng WS, Loh M, et al. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep. 2007;18(5):1225–30. CASPubMed Google Scholar
Tang LP, Zhu SS, Peng WY, Yin XD, Tan C, Yang YY. Epigenetic identification of mitogen-activated protein kinase 10 as a functional tumor suppressor and clinical significance for hepatocellular carcinoma. PeerJ. 2021;9:e10810. ArticlePubMedPubMed Central Google Scholar
Teng Y, Fan YC, Mu NN, Zhao J, Sun FK, Wang K. Serum SOX11 promoter methylation is a novel biomarker for the diagnosis of Hepatitis B virus-related hepatocellular carcinoma. Neoplasma. 2016;63(3):419–26. ArticleCASPubMed Google Scholar
Tian MM, Fan YC, Zhao J, Gao S, Zhao ZH, Chen LY, et al. Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B. Clin Res Hepatol Gastroenterol. 2017;41(2):171–80. ArticleCASPubMed Google Scholar
Wong N, Lam WC, Lai PB, Pang E, Lau WY, Johnson PJ. Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol. 2001;159(2):465–71. ArticleCASPubMedPubMed Central Google Scholar
Wu HC, Wang Q, Yang HI, Tsai WY, Chen CJ, Santella RM. Global DNA methylation levels in white blood cells as a biomarker for hepatocellular carcinoma risk: a nested casecontrol study. Carcinogenesis. 2012;33(7):1340–5. ArticleCASPubMedPubMed Central Google Scholar
Wu HC, Wang Q, Yang HI, Tsai WY, Chen CJ, Santella RM. Global DNA methylation in a population with aflatoxin B1 exposure. Epigenetics. 2013;8(9):962–9. ArticleCASPubMedPubMed Central Google Scholar
Xiang L, Chen LM, Zhai YJ, Sun WJ, Yang JR, Fan YC, et al. Hypermethylation of secreted frizzled related protein 2 gene promoter serves as a noninvasive biomarker for HBV-associated hepatocellular carcinoma. Life Sci. 2021;270:119061. ArticleCASPubMed Google Scholar
Xie GF, Xu YX, Xu F, Sun LY, Ye ZL, Ma JJ, et al. Plasma _SGIP_1 methylation in diagnosis and prognosis prediction in hepatocellular carcinoma. Neoplasma. 2021;68(1):62–70. ArticleCASPubMed Google Scholar
Xu F, Zhang LL, Xu YX, Song D, He WT, Ji XM, et al. Hypermethylation of SCAND3 and Myo1g gene are potential diagnostic biomarkers for hepatocellular carcinoma. Cancers. 2020;12(8):2332. ArticleCASPubMedPubMed Central Google Scholar
Xu ZG, Du JJ, Zhang X, Cheng ZH, Ma ZZ, Xiao HS, et al. A novel liver-specific zona pellucida domain containing protein that is expressed rarely in hepatocellular carcinoma. Hepatology. 2003;38(3):735–44. ArticleCASPubMed Google Scholar
Yan XJ, Wu TY, Tang M, Chen DL, Huang MY, Zhou SC, et al. Methylation of the ataxia telangiectasia mutated gene (ATM) promoter as a radiotherapy outcome biomarker in patients with hepatocellular carcinoma. Medicine (Baltimore). 2020;99(4):e18823. ArticleCASPubMed Google Scholar
Yang JR, Wang J, Li HM, Gao S, Fan YC, Wang K. IL-6 promoter hypomethylation acts as a diagnostic biomarker in hepatitis B virus-associated hepatocellular carcinoma. Front Oncol. 2022;12:746643. ArticleCASPubMedPubMed Central Google Scholar
Yang Y, Fan YC, Gao S, Dou CY, Zhang JJ, Sun FK, et al. Methylated cysteine dioxygenase-1 gene promoter in the serum is a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Tohoku J Exp Med. 2014;232(3):187–94. ArticleCASPubMed Google Scholar
Yuan XD, Wang JW, Fang Y, Qian Y, Gao S, Fan YC, et al. Methylation status of the T-cadherin gene promotor in peripheral blood mononuclear cells is associated with HBV-related hepatocellular carcinoma progression. Pathol Res Pract. 2020;216(5):152914. ArticleCASPubMed Google Scholar
Zhang C, Ge S, Wang J, Jing XT, Li HL, Mei SY, et al. Epigenomic profiling of DNA methylation for hepatocellular carcinoma diagnosis and prognosis prediction. J Gastroenterol Hepatol. 2019;34(10):1869–77. ArticleCASPubMed Google Scholar
Zhang PJ, Wen XY, Gu F, Deng XX, Li J, Dong J, et al. Methylation profiling of serum DNA from hepatocellular carcinoma patients using an Infinium Human Methylation 450 BeadChip. Hepatol Int. 2013;7(3):893–900. ArticlePubMed Google Scholar
Zhang Y, Wang JW, Su X, Li JE, Wei XF, Yang JR, et al. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol. 2023;14:1267844. ArticlePubMedPubMed Central Google Scholar
Zhang YJ, Wu HC, Shen J, Ahsan H, Tsai WY, Yang HL, et al. Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res. 2007;13(8):2378–84. ArticleCASPubMed Google Scholar
Zhang ZY, Chen P, Xie H, Cao PG. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Med. 2020;9(4):1349–64. ArticleCASPubMed Google Scholar
Raos D, Ulamec M, Bojanac AK, Bulic-Jakus F, Jezek D, Sincic N. Epigenetically inactivated RASSF1A as a tumor biomarker. Bosn J Basic Med Sci. 2021;21(4):386–97. CASPubMedPubMed Central Google Scholar
Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Méndez-González J, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61(6):1945–56. ArticleCASPubMed Google Scholar
Kakehashi A, Ishii N, Shibata T, Wei M, Okazaki E, Tachibana T, et al. Mitochondrial prohibitins and septin 9 are implicated in the onset of rat hepatocarcinogenesis. Toxicol Sci. 2011;119(1):61–72. ArticleCASPubMed Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. ArticlePubMed Google Scholar
Zhang W, Dai J, Hou G, Liu H, Zheng S, Wang X, et al. SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation. Mol Cell. 2023;83(23):4352-69.e8. ArticleCASPubMed Google Scholar
Tilman G, Arnoult N, Lenglez S, Van Beneden A, Loriot A, De Smet C, et al. Cancer-linked satellite 2 DNA hypomethylation does not regulate Sat2 non-coding RNA expression and is initiated by heat shock pathway activation. Epigenetics. 2012;7(8):903–13. ArticleCASPubMedPubMed Central Google Scholar
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell. 2010;19(4):625–38. ArticleCASPubMed Google Scholar
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. ArticlePubMed Google Scholar
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177(2):428-45.e18. ArticleCASPubMedPubMed Central Google Scholar
Guo X, Gao C, Yang D-H, Li S. Exosomal circular RNAs: a chief culprit in cancer chemotherapy resistance. Drug Resist Updates. 2023;67:100937. ArticleCAS Google Scholar
Adamczyk AM, Leicaj ML, Fabiano MP, Cabrerizo G, Bannoud N, Croci DO, et al. Extracellular vesicles from human plasma dampen inflammation and promote tissue repair functions in macrophages. J Extracell Vesicles. 2023;12(6):e12331. ArticlePubMed Google Scholar
Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11. ArticleCASPubMed Google Scholar
Yeo W, Mo FK, Chan SL, Leung NW, Hui P, Lam WY, et al. Hepatitis B viral load predicts survival of HCC patients undergoing systemic chemotherapy. Hepatology. 2007;45(6):1382–9. ArticleCASPubMed Google Scholar
Choi WM, Kim GA, Choi J, Choi GH, Lee YB, Sinn DH, et al. Non-linear association of baseline viral load with on-treatment hepatocellular carcinoma risk in chronic hepatitis B. Gut. 2024;73(4):649–58. CASPubMed Google Scholar
Choi WM, Yip TC, Kim WR, Yee LJ, Brooks-Rooney C, Curteis T, et al. Chronic hepatitis B baseline viral load and on-treatment liver cancer risk: a multinational cohort study of HBeAg-positive patients. Hepatology. 2024;80(2):428–39. PubMed Google Scholar
Riveiro-Barciela M, Pericàs JM, Buti M. How to interpret viral markers in the management of chronic hepatitis B infection. Clin Microbiol Infect. 2022;28(3):355–61. ArticleCASPubMed Google Scholar
Yoshida M, Hatano N, Nishiumi S, Irino Y, Izumi Y, Takenawa T, et al. Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry. J Gastroenterol. 2012;47(1):9–20. ArticleCASPubMed Google Scholar
Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, et al. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(19):3061–8. ArticleCASPubMed Google Scholar
Wu H, Xue R, Dong L, Liu T, Deng C, Zeng H, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta. 2009;648(1):98–104. ArticleCASPubMed Google Scholar
Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics. 2011;10(7):M110.004945. ArticlePubMedPubMed Central Google Scholar
Chew V, Chuang CH, Hsu C. Translational research on drug development and biomarker discovery for hepatocellular carcinoma. J Biomed Sci. 2024;31(1):22. ArticlePubMedPubMed Central Google Scholar
Niu F, Wang DC, Lu J, Wu W, Wang X. Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med. 2016;20(9):1789–95. ArticlePubMedPubMed Central Google Scholar
Xing X, Cai L, Ouyang J, Wang F, Li Z, Liu M, et al. Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma. Nat Commun. 2023;14(1):8392. ArticleCASPubMedPubMed Central Google Scholar
Nie W, Yan L, Lee YH, Guha C, Kurland IJ, Lu H. Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. Mass Spectrom Rev. 2016;35(3):331–49. ArticleCASPubMed Google Scholar
Wang Y, Xie Y, Qian L, Ding R, Pang R, Chen P, et al. RAB42 overexpression correlates with poor prognosis, immune cell infiltration and chemoresistance. Front Pharmacol. 2024;15:1445170. ArticlePubMedPubMed Central Google Scholar
Xu RH, Wei W, Krawczyk M, Wang WQ, Luo HY, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155-#x0002B; ArticleCASPubMed Google Scholar
Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, et al. Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 2020;12(1):102. ArticleCASPubMedPubMed Central Google Scholar
Wang X, Zhang A, Sun H. Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma. Hepatology. 2013;57(5):2072–7. ArticleCASPubMed Google Scholar
Lee T, Rawding PA, Bu J, Hyun S, Rou W, Jeon H, et al. Machine-learning-based clinical biomarker using cell-free DNA for hepatocellular carcinoma (HCC). Cancers. 2022;14(9):2061. ArticleCASPubMedPubMed Central Google Scholar
Li M, Wang L, Cong L, Wong CC, Zhang X, Chen H, et al. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatology. 2024;79(3):560–74. PubMed Google Scholar
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, et al. Integration of clinical trial spatial multiomics analysis and virtual clinical trials enables immunotherapy response prediction and biomarker discovery. Cancer Res. 2024;84(16):2734–48. ArticlePubMed Google Scholar
Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 2020;72(2):215–29. ArticleCASPubMed Google Scholar
Trevisani F, Vitale A, Kudo M, Kulik L, Park JW, Pinato DJ, et al. Merits and boundaries of the BCLC staging and treatment algorithm: learning from the past to improve the future with a novel proposal. J Hepatol. 2024;80(4):661–9. ArticlePubMed Google Scholar
Zhang XP, Jiang N, Zhu L, Lin ZY, Guo WX, Chen X, et al. Short-term and long-term outcomes after robotic versus open hepatectomy in patients with large hepatocellular carcinoma: a multicenter study. Int J Surg. 2024;110(2):660–7. ArticlePubMed Google Scholar
Liu G, Wang K, Li J, Xia Y, Lu L, Wan X, et al. Changes in serum alpha fetoprotein in patients with recurrent hepatocellular carcinoma following hepatectomy. J Gastroenterol Hepatol. 2015;30(9):1405–11. ArticleCASPubMed Google Scholar
Wei W-X, Yang Z-S, Lu L-H, Li J, Lei Z-Q, Wang K, et al. Long-term survival after partial hepatectomy for sub-stage patients with intermediate stage hepatocellular carcinoma. Int J Surg. 2018;56:256–63. ArticlePubMed Google Scholar
Jin GZ, Yu WL, Dong H, Zhou WP, Gu YJ, Yu H, et al. SUOX is a promising diagnostic and prognostic biomarker for hepatocellular carcinoma. J Hepatol. 2013;59(3):510–7. ArticleCASPubMed Google Scholar
Yamamoto K, Imamura H, Matsuyama Y, Kume Y, Ikeda H, Norman GL, et al. AFP, AFP-L3, DCP, and GP73 as markers for monitoring treatment response and recurrence and as surrogate markers of clinicopathological variables of HCC. J Gastroenterol. 2010;45(12):1272–82. ArticleCASPubMed Google Scholar
Toyoda H, Kumada T, Tada T, Niinomi T, Ito T, Kaneoka Y, et al. Prognostic significance of a combination of pre- and post-treatment tumor markers for hepatocellular carcinoma curatively treated with hepatectomy. J Hepatol. 2012;57(6):1251–7. ArticleCASPubMed Google Scholar
Chan AWH, Zhong J, Berhane S, Toyoda H, Cucchetti A, Shi K, et al. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection. J Hepatol. 2018;69(6):1284–93. ArticlePubMed Google Scholar
Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S, et al. Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2009;100(8):1403–7. ArticleCASPubMedPubMed Central Google Scholar
Wang L, Pan L, Yao M, Cai Y, Dong Z, Yao D. Expression of oncofetal antigen glypican-3 associates significantly with poor prognosis in HBV-related hepatocellular carcinoma. Oncotarget. 2016;7(27):42150. ArticlePubMedPubMed Central Google Scholar
Ning S, Bin C, Na H, Peng S, Yi D, Xiang-hua Y, et al. Glypican-3, a novel prognostic marker of hepatocellular cancer, is related with postoperative metastasis and recurrence in hepatocellular cancer patients. Mol Biol Rep. 2012;39(1):351–7. ArticleCASPubMed Google Scholar
Yorita K, Takahashi N, Takai H, Kato A, Suzuki M, Ishiguro T, et al. Prognostic significance of circumferential cell surface immunoreactivity of glypican-3 in hepatocellular carcinoma. Liver Int. 2011;31(1):120–31. ArticleCASPubMed Google Scholar
Haruyama Y, Yorita K, Yamaguchi T, Kitajima S, Amano J, Ohtomo T, et al. High preoperative levels of serum glypican-3 containing N-terminal subunit are associated with poor prognosis in patients with hepatocellular carcinoma after partial hepatectomy. Int J Cancer. 2015;137(7):1643–51. ArticleCASPubMed Google Scholar
Wang YL, Zhu ZJ, Teng DH, Yao Z, Gao W, Shen ZY. Glypican-3 expression and its relationship with recurrence of HCC after liver transplantation. World J Gastroenterol. 2012;18(19):2408–14. ArticleCASPubMedPubMed Central Google Scholar
Wang Y, Shen Z, Zhu Z, Han R, Huai M. Clinical values of AFP, GPC3 mRNA in peripheral blood for prediction of hepatocellular carcinoma recurrence following OLT: AFP, GPC3 mRNA for prediction of HCC. Hepat Mon. 2011;11(3):195. CASPubMedPubMed Central Google Scholar
Yu M-C, Lee Y-S, Lin S-E, Wu H-Y, Chen T-C, Lee W-C, et al. Recurrence and poor prognosis following resection of small hepatitis B-related hepatocellular carcinoma lesions are associated with aberrant tumor expression profiles of glypican 3 and osteopontin. Ann Surg Oncol. 2012;19:455–63. Article Google Scholar
Feng J, Zhu R, Chang C, Yu L, Cao F, Zhu G, et al. CK19 and glypican 3 expression profiling in the prognostic indication for patients with HCC after surgical resection. PLoS One. 2016;11(3):e0151501. ArticlePubMedPubMed Central Google Scholar
Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, et al. Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology. 2012;56(6):2231–41. ArticleCASPubMed Google Scholar
Zheng J, Yan X, Lu T, Song W, Li Y, Liang J, et al. CircFOXK2 promotes hepatocellular carcinoma progression and leads to a poor clinical prognosis via regulating the Warburg effect. J Exp Clin Cancer Res. 2023;42(1):63. ArticleCASPubMedPubMed Central Google Scholar
Shi J, Li Y, Liang S, Zeng J, Liu G, Mu F, et al. Circulating tumour cells as biomarkers for evaluating cryosurgery on unresectable hepatocellular carcinoma. Oncol Rep. 2016;36(4):1845–51. ArticleCASPubMed Google Scholar
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73. ArticleCASPubMed Google Scholar
Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015;61(1):259–66. ArticleCASPubMed Google Scholar
Kelley RK, Magbanua MJM, Butler TM, Collisson EA, Hwang J, Sidiropoulos N, et al. Circulating tumor cells in hepatocellular carcinoma: a pilot study of detection, enumeration, and next-generation sequencing in cases and controls. BMC Cancer. 2015;15:206. ArticlePubMedPubMed Central Google Scholar
Yu JJ, Xiao W, Dong SL, Liang HF, Zhang ZW, Zhang BX, et al. Effect of surgical liver resection on circulating tumor cells in patients with hepatocellular carcinoma. BMC Cancer. 2018;18(1):835. ArticlePubMedPubMed Central Google Scholar
Shen J, Wang WS, Zhu XL, Ni CF. High epithelial cell adhesion molecule-positive circulating tumor cell count predicts poor survival of patients with unresectable hepatocellular carcinoma treated with transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2018;29(12):1678–84. ArticlePubMed Google Scholar
Agopian VG, Harlander-Locke M, Zarrinpar A, Kaldas FM, Farmer DG, Yersiz H, et al. A novel prognostic nomogram accurately predicts hepatocellular carcinoma recurrence after liver transplantation: analysis of 865 consecutive liver transplant recipients. J Am Coll Surg. 2015;220(4):416–27. ArticlePubMed Google Scholar
Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30:6–25. ArticlePubMed Google Scholar
Gillmore R, Stuart S, Kirkwood A, Hameeduddin A, Woodward N, Burroughs AK, et al. EASL and mRECIST responses are independent prognostic factors for survival in hepatocellular cancer patients treated with transarterial embolization. J Hepatol. 2011;55(6):1309–16. ArticlePubMed Google Scholar
Martin SP, Fako V, Dang H, Dominguez DA, Khatib S, Ma L, et al. PKM2 inhibition may reverse therapeutic resistance to transarterial chemoembolization in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39(1):99. ArticleCASPubMedPubMed Central Google Scholar
Sefrioui D, Verdier V, Savoye-Collet C, Beaussire L, Ghomadi S, Gangloff A, et al. Circulating DNA changes are predictive of disease progression after transarterial chemoembolization. Int J Cancer. 2022;150(3):532–41. ArticleCASPubMed Google Scholar
Cornell L, Munck JM, Alsinet C, Villanueva A, Ogle L, Willoughby CE, et al. DNA-PK—a candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival. Clin Cancer Res. 2015;21(4):925–33. ArticleCASPubMed Google Scholar
Niizeki T, Sumie S, Torimura T, Kurogi J, Kuromatsu R, Iwamoto H, et al. Serum vascular endothelial growth factor as a predictor of response and survival in patients with advanced hepatocellular carcinoma undergoing hepatic arterial infusion chemotherapy. J Gastroenterol. 2012;47(6):686–95. ArticleCASPubMed Google Scholar
Lyu N, Wang X, Li JB, Lai JF, Chen QF, Li SL, et al. Arterial chemotherapy of oxaliplatin plus fluorouracil versus sorafenib in advanced hepatocellular carcinoma: a biomolecular exploratory, randomized, phase III trial (FOHAIC-1). J Clin Oncol. 2022;40(5):468–80. ArticlePubMed Google Scholar
Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, et al. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol. 2024;21(4):294–311. ArticlePubMed Google Scholar
Doyle A, Gorgen A, Muaddi H, Aravinthan AD, Issachar A, Mironov O, et al. Outcomes of radiofrequency ablation as first-line therapy for hepatocellular carcinoma less than 3 cm in potentially transplantable patients. J Hepatol. 2019;70(5):866–73. ArticlePubMed Google Scholar
Shiina S, Tateishi R, Arano T, Uchino K, Enooku K, Nakagawa H, et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol. 2012;107(4):569–77; quiz 78. ArticleCASPubMed Google Scholar
Pompili M, Saviano A, de Matthaeis N, Cucchetti A, Ardito F, Federico B, et al. Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma ≤3 cm. Results of a multicenter Italian survey. J Hepatol. 2013;59(1):89–97. ArticlePubMed Google Scholar
Canale M, Ulivi P, Foschi FG, Scarpi E, De Matteis S, Donati G, et al. Clinical and circulating biomarkers of survival and recurrence after radiofrequency ablation in patients with hepatocellular carcinoma. Crit Rev Oncol Hematol. 2018;129:44–53. ArticlePubMed Google Scholar
Hameed B, Mehta N, Sapisochin G, Roberts JP, Yao FY. Alpha-fetoprotein level> 1000 ng/mL as an exclusion criterion for liver transplantation in patients with hepatocellular carcinoma meeting the Milan criteria. Liver Transpl. 2014;20(8):945–51. ArticlePubMedPubMed Central Google Scholar
Berry K, Ioannou GN. Serum alpha-fetoprotein level independently predicts posttransplant survival in patients with hepatocellular carcinoma. Liver Transpl. 2013;19(6):634–45. ArticlePubMed Google Scholar
Matsumura M, Shiratori Y, Niwa Y, Tanaka T, Ogura K, Okudaira T, et al. Presence of alpha-fetoprotein mRNA in blood correlates with outcome in patients with hepatocellular carcinoma. J Hepatol. 1999;31(2):332–9. ArticleCASPubMed Google Scholar
Lemoine A, Le Bricon T, Salvucci M, Azoulay D, Pham P, Raccuia J, et al. Prospective evaluation of circulating hepatocytes by alpha-fetoprotein mRNA in humans during liver surgery. Ann Surg. 1997;226(1):43–50. ArticleCASPubMedPubMed Central Google Scholar
Jin J, Niu X, Zou L, Li L, Li S, Han J, et al. AFP mRNA level in enriched circulating tumor cells from hepatocellular carcinoma patient blood samples is a pivotal predictive marker for metastasis. Cancer Lett. 2016;378(1):33–7. ArticleCASPubMed Google Scholar
Kong SY, Park JW, Kim JO, Lee NO, Lee JA, Park KW, et al. Alpha-fetoprotein and human telomerase reverse transcriptase mRNA levels in peripheral blood of patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2009;135(8):1091–8. ArticleCASPubMed Google Scholar
Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–700. ArticleCASPubMed Google Scholar
Onaca N, Davis GL, Goldstein RM, Jennings LW, Klintmalm GB. Expanded criteria for liver transplantation in patients with hepatocellular carcinoma: a report from the International Registry of Hepatic Tumors in Liver Transplantation. Liver Transpl. 2007;13(3):391–9. https://doi.org/10.1002/lt.21095. ArticlePubMed Google Scholar
Hong G, Suh K-S, Suh S-W, Yoo T, Kim H, Park M-S, et al. Alpha-fetoprotein and 18F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation. J Hepatol. 2016;64(4):852–9. ArticleCASPubMed Google Scholar
Kim Y-I, Paeng JC, Cheon GJ, Suh K-S, Lee DS, Chung J-K, et al. Prediction of posttransplantation recurrence of hepatocellular carcinoma using metabolic and volumetric indices of 18F-FDG PET/CT. J Nucl Med. 2016;57(7):1045–51. ArticleCASPubMed Google Scholar
Kang YK, Choi JY, Paeng JC, Kim YI, Kwon HW, Cheon GJ, et al. Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation. Eur Radiol. 2019;29(11):6009–17. ArticlePubMed Google Scholar
Li WX, Li Z, Gao PJ, Gao J, Zhu JY. Histological differentiation predicts post-liver transplantation survival time. Clin Res Hepatol Gastroenterol. 2014;38(2):201–8. ArticlePubMed Google Scholar
Lu Y, Chan Y-T, Wu J, Feng Z, Yuan H, Li Q, et al. CRISPR/Cas9 screens unravel miR-3689a-3p regulating sorafenib resistance in hepatocellular carcinoma via suppressing CCS/SOD1-dependent mitochondrial oxidative stress. Drug Resist Updates. 2023;71:101015. ArticleCAS Google Scholar
Yu J, Park R, Kim R. Promising novel biomarkers for hepatocellular carcinoma: diagnostic and prognostic insights. J Hepatocell Carcinoma. 2023;10:1105–27. ArticleCASPubMedPubMed Central Google Scholar
Shuen TWH, Alunni-Fabbroni M, Öcal E, Malfertheiner P, Wildgruber M, Schinner R, et al. Extracellular vesicles may predict response to radioembolization and sorafenib treatment in advanced hepatocellular carcinoma: an exploratory analysis from the SORAMIC trial. Clin Cancer Res. 2022;28(17):3890–901. ArticleCASPubMedPubMed Central Google Scholar
Goyal L, Zheng H, Abrams TA, Miksad R, Bullock AJ, Allen JN, et al. A phase II and biomarker study of sorafenib combined with modified FOLFOX in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2019;25(1):80–9. ArticleCASPubMed Google Scholar
El Shorbagy S, abuTaleb F, Labib HA, Ebian H, Harb OA, Mohammed MS, et al. Prognostic significance of VEGF and HIF-1 α in hepatocellular carcinoma patients receiving sorafenib versus metformin sorafenib combination. J Gastrointest Cancer. 2021;52(1):269–79. ArticlePubMed Google Scholar
Chan YT, Wu J, Lu Y, Li Q, Feng Z, Xu L, et al. Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol Cancer. 2024;23(1):74. ArticleCASPubMedPubMed Central Google Scholar
Lee SH, Yim SY, Jeong YS, Li QX, Kang SH, Sohn BH, et al. Consensus subtypes of hepatocellular carcinoma associated with clinical outcomes and genomic phenotypes. Hepatology. 2022;76(6):1634–48. ArticleCASPubMed Google Scholar
Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SL, et al. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis. 2021;12(6):555. ArticlePubMedPubMed Central Google Scholar
Li J, Shi L, Zhang X, Sun B, Yang Y, Ge N, et al. pERK/pAkt phenotyping in circulating tumor cells as a biomarker for sorafenib efficacy in patients with advanced hepatocellular carcinoma. Oncotarget. 2016;7(3):2646–59. ArticlePubMed Google Scholar
Fu Y, Yang Z, Hu Z, Yang Z, Pan Y, Chen J, et al. Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol Int. 2022;16(4):868–78. ArticlePubMed Google Scholar
Myojin Y, Kodama T, Maesaka K, Motooka D, Sato Y, Tanaka S, et al. ST6GAL1 is a novel serum biomarker for lenvatinib-susceptible FGF19-driven hepatocellular carcinoma. Clin Cancer Res. 2021;27(4):1150–61. ArticleCASPubMed Google Scholar
Zhang P, Sun H, Wen P, Wang Y, Cui Y, Wu J. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma. Mol Ther Nucleic Acids. 2022;27:293–303. ArticlePubMed Google Scholar
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev. 2023;42(3):629–52. ArticlePubMed Google Scholar
Yan T, Yu L, Zhang N, Peng C, Su G, Jing Y, et al. The advanced development of molecular targeted therapy for hepatocellular carcinoma. Cancer Biol Med. 2022;19(6):802–17. ArticleCASPubMedPubMed Central Google Scholar
Scheiner B, Pomej K, Kirstein MM, Hucke F, Finkelmeier F, Waidmann O, et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J Hepatol. 2022;76(2):353–63. ArticleCASPubMed Google Scholar
Yang Z, Fu Y, Wang Q, Pan Y, Wang J, Chen J, et al. Dynamic changes of serum α-fetoprotein predict the prognosis of bevacizumab plus immunotherapy in hepatocellular carcinoma. Int J Surg. 2024. https://doi.org/10.1097/JS9.0000000000001860.
Weng J, Wang Z, Hu Z, Xu W, Sun JL, Wang F, et al. Repolarization of immunosuppressive macrophages by targeting SLAMF7-regulated CCL2 signaling sensitizes hepatocellular carcinoma to immunotherapy. Cancer Res. 2024;84(11):1817–33. ArticleCASPubMed Google Scholar
Winograd P, Hou S, Sadeghi S, Finn R, DiPardo B, Li Q, et al. Evaluation of hepatocellular carcinoma circulating tumor cells expressing programmed death-ligand 1. HPB. 2018;20:S2–3. Article Google Scholar
Hong JY, Cho HJ, Sa JK, Liu X, Ha SY, Lee T, et al. Hepatocellular carcinoma patients with high circulating cytotoxic T cells and intra-tumoral immune signature benefit from pembrolizumab: results from a single-arm phase 2 trial. Genome Med. 2022;14(1):1. ArticleCASPubMedPubMed Central Google Scholar
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer. 2024;23(1):130. ArticleCASPubMedPubMed Central Google Scholar
Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer. 2020;19(1):92. ArticleCASPubMedPubMed Central Google Scholar
Zhu AX, Abbas AR, de Galarreta MR, Guan Y, Lu S, Koeppen H, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28(8):1599–611. ArticleCASPubMed Google Scholar
Campani C, Bamba-Funck J, Campion B, Sidali S, Blaise L, Ganne-Carrié N, et al. Baseline ALBI score and early variation of serum AFP predicts outcomes in patients with HCC treated by atezolizumab-bevacizumab. Liver Int. 2023;43(3):708–17. ArticleCASPubMed Google Scholar
Shi J, Liu J, Tu X, Li B, Tong Z, Wang T, et al. Single-cell immune signature for detecting early-stage HCC and early assessing anti-PD-1 immunotherapy efficacy. J Immunother Cancer. 2022;10(1):e003133. ArticlePubMedPubMed Central Google Scholar
Ruiz M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, et al. β-catenin activation promotes immune escape and resistance to anti-pd-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9(8):1124–41. Article Google Scholar
Ye Z, Wang Y, Yuan R, Ding R, Hou Y, Qian L, et al. Vesicle-mediated transport-related genes predict the prognosis and immune microenvironment in hepatocellular carcinoma. J Cancer. 2024;15(12):3645–62. ArticlePubMedPubMed Central Google Scholar
He H, Chen S, Fan Z, Dong Y, Wang Y, Li S, et al. Multi-dimensional single-cell characterization revealed suppressive immune microenvironment in AFP-positive hepatocellular carcinoma. Cell Discov. 2023;9(1):60. ArticleCASPubMedPubMed Central Google Scholar
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021;371(6536):eabc4552. ArticleCASPubMedPubMed Central Google Scholar
McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 2019;20(2):e77–91. ArticlePubMed Google Scholar
Schwabe RF, Greten TF. Gut microbiome in HCC - mechanisms, diagnosis and therapy. J Hepatol. 2020;72(2):230–8. ArticleCASPubMed Google Scholar
Silveira MAD, Bilodeau S, Greten TF, Wang XW, Trinchieri G. The gut-liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer. 2022;8(7):583–97. ArticleCASPubMedPubMed Central Google Scholar
Kang Y, Cai Y, Yang Y. The gut microbiome and hepatocellular carcinoma: implications for early diagnostic biomarkers and novel therapies. Liver Cancer. 2022;11(2):113–25. ArticleCASPubMed Google Scholar
Zheng Y, Wang T, Tu X, Huang Y, Zhang H, Tan D, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. 2019;7(1):193. ArticleCASPubMedPubMed Central Google Scholar
Zhang L, Chen C, Chai D, Li C, Guan Y, Liu L, et al. The association between antibiotic use and outcomes of HCC patients treated with immune checkpoint inhibitors. Front Immunol. 2022;13:956533. ArticleCASPubMedPubMed Central Google Scholar
Wu H, Zheng X, Pan T, Yang X, Chen X, Zhang B, et al. Dynamic microbiome and metabolome analyses reveal the interaction between gut microbiota and anti-PD-1 based immunotherapy in hepatocellular carcinoma. Int J Cancer. 2022;151(8):1321–34. ArticleCASPubMed Google Scholar
Fulgenzi CAM, et al. Effect of early antibiotic exposure on survival of patients receiving atezolizumab plus bevacizumab but not sorafenib for unresectable HCC: A sub-analysis of the phase III IMbrave150 study. JCO. 2023;41:597–597. https://doi.org/10.1200/JCO.2023.41.4_suppl.597. Article Google Scholar
Lee PC, Wu CJ, Hung YW, Lee CJ, Chi CT, Lee IC, et al. Gut microbiota and metabolites associate with outcomes of immune checkpoint inhibitor-treated unresectable hepatocellular carcinoma. J Immunother Cancer. 2022;10(6):e004779. ArticlePubMedPubMed Central Google Scholar
Nault JC, Villanueva A. Biomarkers for hepatobiliary cancers. Hepatology. 2021;73(Suppl 1):115–27. ArticlePubMed Google Scholar
Wang B, Qi FZ, Chen P, Qian LM, Su HS, Wang Y, et al. Hypoxia-activated selectivity-improved anti-PKM2 antibody combined with prodrug TH-302 for potentiated targeting therapy in hepatocellular carcinoma. Int J Biol Sci. 2024;20(5):1634–51. ArticleCASPubMedPubMed Central Google Scholar
Qi S, Su L, Li J, Zhao P, Zhang Q, Niu X, et al. YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis. 2019;10(6):462. ArticlePubMedPubMed Central Google Scholar
Zhao P, Zhang W, Wang SJ, Yu XL, Tang J, Huang W, et al. HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology. 2011;54(6):2012–24. ArticleCASPubMed Google Scholar
Qi S, Su L, Li J, Zhang C, Ma Z, Liu G, et al. Arf6-driven endocytic recycling of CD147 determines HCC malignant phenotypes. J Exp Clin Cancer Res. 2019;38(1):471. ArticleCASPubMedPubMed Central Google Scholar
Qi FZ, Su HS, Wang B, Qian LM, Wang Y, Wang CH, et al. Hypoxia-activated ADCC-enhanced humanized anti-CD147 antibody for liver cancer imaging and targeted therapy with improved selectivity. MedComm (2020). 2024;5(3):e512. CASPubMed Google Scholar
Zhu AX, Gold PJ, El-Khoueiry AB, Abrams TA, Morikawa H, Ohishi N, et al. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2013;19(4):920–8. ArticleCASPubMed Google Scholar
Abou-Alfa GK, Yen CJ, Hsu CH, O’Donoghue J, Beylergil V, Ruan S, et al. Phase Ib study of codrituzumab in combination with sorafenib in patients with non-curable advanced hepatocellular carcinoma (HCC). Cancer Chemother Pharmacol. 2017;79(2):421–9. ArticleCASPubMedPubMed Central Google Scholar
Abou-Alfa GK, Puig O, Daniele B, Kudo M, Merle P, Park JW, et al. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J Hepatol. 2016;65(2):289–95. ArticleCASPubMed Google Scholar
Jin ZC, Chen JJ, Zhu XL, Duan XH, Xin YJ, Zhong BY, et al. Immune checkpoint inhibitors and anti-vascular endothelial growth factor antibody/tyrosine kinase inhibitors with or without transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma (CHANCE2201): a target trial emulation study. EClinicalMedicine. 2024;72:102622. ArticlePubMedPubMed Central Google Scholar
Bai L, Sun M, Xu A, Bai Y, Wu J, Shao G, et al. Phase 2 study of AK104 (PD-1/CTLA-4 bispecific antibody) plus lenvatinib as first-line treatment of unresectable hepatocellular carcinoma. J Clin Oncol. 2021;39(15_suppl):4101. Article Google Scholar
Hussein MS, Li Q, Mao R, Peng Y, He Y. TCR T cells overexpressing c-Jun have better functionality with improved tumor infiltration and persistence in hepatocellular carcinoma. Front Immunol. 2023;14:1114770. ArticleCASPubMedPubMed Central Google Scholar
A phase 1, single-arm, open-label, dose-escalation study of AFP specific T cell receptor transduced T cells injection (HRYZ-T102) in patients with AFP positive advanced hepatocellular carcinoma and other solid tumors. 2024. Available from: https://clinicaltrials.gov/study/NCT06515314.
Sun L, Guo H, Jiang R, Lu L, Liu T, He X. Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol. 2016;37(1):799–806. ArticleCASPubMed Google Scholar
Xu J, Shen J, Gu S, Zhang Y, Wu L, Wu J, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a nonrandomized, open-label, phase II trial. Clin Cancer Res. 2021;27(4):1003–11. ArticleCASPubMed Google Scholar
Hashimoto A, Sarker D, Reebye V, Jarvis S, Sodergren MH, Kossenkov A, et al. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin Cancer Res. 2021;27(21):5961–78. ArticleCASPubMedPubMed Central Google Scholar
Chan SL, Schuler M, Kang YK, Yen CJ, Edeline J, Choo SP, et al. A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors. J Exp Clin Cancer Res. 2022;41(1):189. ArticleCASPubMedPubMed Central Google Scholar
Chen WT, Lin SM, Lee WC, Wu TJ, Lin CC, Shen CH, et al. GALNT14 genotype-guided chemoembolization plus sorafenib therapy in hepatocellular carcinoma: a randomized trial. Hepatol Int. 2022;16(1):148–58. ArticlePubMed Google Scholar
Zhou M, Zhu S, Xu C, Liu B, Shen J. A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Invest New Drugs. 2023;41(1):162–7. ArticleCASPubMed Google Scholar
Woei AJF, Weijl NI, Burgmans MC, Fariña Sarasqueta A, van Wezel JT, Wasser M, et al. Neoadjuvant treatment with angiogenesis-inhibitor dovitinib prior to local therapy in hepatocellular carcinoma: a phase II study. Oncologist. 2021;26(10):854–64. Article Google Scholar
Fountzilas C, Gupta M, Lee S, Krishnamurthi S, Estfan B, Wang K, et al. A multicentre phase 1b/2 study of tivozanib in patients with advanced inoperable hepatocellular carcinoma. Br J Cancer. 2020;122(7):963–70. ArticleCASPubMedPubMed Central Google Scholar
Giannelli G, Santoro A, Kelley RK, Gane E, Paradis V, Cleverly A, et al. Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib. PLoS One. 2020;15(3):e0222259. ArticleCASPubMedPubMed Central Google Scholar
Kelley RK, Ryoo BY, Merle P, Park JW, Bolondi L, Chan SL, et al. Second-line cabozantinib after sorafenib treatment for advanced hepatocellular carcinoma: a subgroup analysis of the phase 3 CELESTIAL trial. ESMO Open. 2020;5(4):e000714. ArticlePubMedPubMed Central Google Scholar
Venturini N, Marron T, Casanova-Acebes M, Mandeli J, Doroshow D, Lucas N, et al. 629 neoadjuvant nivolumab combined with CCR2/5 inhibitor or anti-IL-8 antibody in non-small cell lung cancer and hepatocellular carcinoma. J Immunother Cancer. 2022;10(Suppl 2):A661. Google Scholar
Cai M, Hong X, Guo Y, Shi W, Huang W, Liang L, et al. 173P A phase II trial of donafenib plus sintilimab for advanced stage hepatocellular carcinoma. Ann Oncol. 2024;35:S79. Article Google Scholar
Cheon J, Jung S, Kang B, Kim H, Kim C, Chon H. Organ-specific responses to atezolizumab plus bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2022;40(16_suppl):4076. Article Google Scholar
Vienot A, Jacquin M, Rebucci-Peixoto M, Pureur D, Ghiringhelli F, Assenat E, et al. Evaluation of the interest to combine a CD4 Th1-inducer cancer vaccine derived from telomerase and atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: a randomized non-comparative phase II study (TERTIO - PRODIGE 82). BMC Cancer. 2023;23(1):710. ArticleCASPubMedPubMed Central Google Scholar
A phase Ib/II, two-part, non-randomized, open-label study to evaluate the safety, tolerability, efficacy, and pharmacokinetics of chidamide in combination with regorafenib in patients with hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05770882.
Cabozantinib treatment in a phase II study for patients with hepatocellular carcinoma (HCC) refractory to PD-1 inhibitors. 2021. Available from: https://clinicaltrials.gov/study/NCT04767906.
VETC-based precision adjuvant therapy for postoperative hepatocellular carcinoma: a prospective multicenter cohort study. 2024. Available from: https://clinicaltrials.gov/study/NCT06311929.
Phase I/II study of PTX-9908 injection as an inhibitor of cancer progression in patients with non-resectable hepatocellular carcinoma following transarterial chemoembolization treatment. 2019. Available from: https://clinicaltrials.gov/study/NCT03812874.
A phase 2, randomized study to evaluate the optimized dose, safety, and efficacy of livmoniplimab in combination with budigalimab for locally advanced or metastatic hepatocellular carcinoma (HCC) patients who have progressed after an immune checkpoint inhibitor containing regimen in first-line HCC. 2023. Available from: https://clinicaltrials.gov/study/NCT05822752.
Efficacy and safety of serplulimab combined with bevacizumab biosimilar and HAIC in advanced hepatocellular carcinoma (HCC) patients. 2024. Available from: https://clinicaltrials.gov/study/NCT06370065.
Efficacy and safety of transarterial chemoembolization in combination with PD-1/PD-L1 inhibitors and molecular target therapies (VEGF-TKI/Bevacizumab) for intermediate stage HCC. 2022. Available from: https://clinicaltrials.gov/study/NCT05332496.
Epigenetic therapeutics to overcome resistance against immune checkpoint inhibitors in hepatocellular carcinoma: a proof-of-concept clinical trial. 2023. Available from: https://clinicaltrials.gov/study/NCT05873244.
An open-label, multi-center, dose-escalation phase 1 study to evaluate the safety, tolerability, and pharmacokinetics of ETN101 in patients with advanced hepatocellular carcinoma. 2024. Available from: https://clinicaltrials.gov/study/NCT06326502.
A randomized, double-blind, placebo-controlled, multicenter phase 3 study of anlotinib hydrochloride capsules combined with penpulimab injection in patients with high risk of relapse after radical surgery or ablation of hepatocellular carcinoma (HCC). 2023. Available from: https://clinicaltrials.gov/study/NCT05862337.
A single-arm, non-randomized, single-center study to evaluate lenvatinib in combination with camrelizumab as first-line therapy in patients with advanced hepatocellular carcinoma. 2020. Available from: https://clinicaltrials.gov/study/NCT04443309.
Ablation in combination with lenvatinib and anti-PD-1 antibodies in patients with early recurrence after radical resection/ablation of HCC: a prospective, randomized, controlled clinical study. 2023. Available from: https://clinicaltrials.gov/study/NCT05803928.
A phase II study to evaluate the efficacy and safety of cryoablation combined with tislelizumab plus lenvatinib as first-line treatment in patients with advanced hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05897268.
Transarterial chemoembolization combined with lenvatinib and Iodion-125 seeds brachytherapy for hepatocellular carcinoma with portal vein branch tumor thrombus: a single center, prospective, randomized control trail. 2021. Available from: https://clinicaltrials.gov/study/NCT04967495.
A phase I study of SBRT vaccination with atezolizumab and bevacizumab for patients with advanced hepatocellular carcinoma. 2022. Available from: https://clinicaltrials.gov/study/NCT05488522.
A prospective, single-arm study of downstaging protocol containing immunotherapy for HCC beyond the Milan criteria before liver transplantation. 2022. Available from: https://clinicaltrials.gov/study/NCT05475613.
A open-label, multi-center, single arm study to evaluate the efficacy and safety of tislelizumab combined with sitravatinib as adjuvant therapy in participants with hepatocellular carcinoma who are at high risk of recurrence after curative hepatic resection. 2022. Available from: https://clinicaltrials.gov/study/NCT05407519.
A phase Ib clinical study to evaluate the efficacy and safety of TQB2618 injection combined with penpulimab injection and anlotinib hydrochloride capsules as first-line treatment for advanced hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05975645.
Regorafenib plus tislelizumab as first-line systemic therapy for patients with advanced hepatocellular carcinoma (HCC). 2019. Available from: https://clinicaltrials.gov/study/NCT04183088.
Efficacy and safety of stereotactic body radiotherapy followed by adebrelimab and lenvatinib for hepatocellular carcinoma with abdominal lymph node metastases: a two-arm, phase II trial. 2024. Available from: https://clinicaltrials.gov/study/NCT06261125.
Safety and efficacy of lenvatinib combined with VIC-1911 in the treatment of lenvatinib-unresponsive or lenvatinib-resistant hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05718882.
Safety and efficacy study of pembrolizumab in combination with lenvatinib in participants with hepatocellular carcinoma (HCC) before liver transplant as neoadjuvant therapY--PLENTY randomized clinical trial. 2020. Available from: https://clinicaltrials.gov/study/NCT04425226.
An open label, randomized, controlled, clinical trial of adoptive autologous invariant natural killer T cells for the treatment of progressed hepatocellular carcinoma continuing on PD-1 inhibitor therapy. 2023. Available from: https://clinicaltrials.gov/study/NCT05962450.
A phase 1b dose-escalation and cohort-expansion study of the safety/tolerability, and efficacy of oncolytic virotherapy plus PD-1 inhibitor and lenvatinib for patients with advanced hepatocellular carcinoma. 2022. Available from: https://clinicaltrials.gov/study/NCT05675462.
A phase 2 study on immune checkpoint inhibitors and radioembolisation for previously untreated metastatic hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05809869.
Observation study of sequential regorafenib combined with immunocheckpoint inhibitors after hepatic artery infusion chemotherapy for advanced hepatocellular carcinoma. 2022. Available from: https://clinicaltrials.gov/study/NCT05573282.
Regorafenib combined with PD-1 inhibitor therapy for second-line treatment of hepatocellular carcinoma: a single arm, nonrandomized, single center clinical study. 2021. Available from: https://clinicaltrials.gov/study/NCT05048017.
Non-invasive CT-based hepatic venous pressure gradient assessment for predicting the prognosis of hepatocellular carcinoma with transarterial chemoembolization (CHANCE-CHESS 2302): a multicenter retrospective study. 2023. Available from: https://clinicaltrials.gov/study/NCT05704192.
A multi-centre single-arm phase II study on durvalumab (MEDI 4736) with stereotactic body radiation therapy (SBRT) in patients with inoperable/unresectable hepatocellular carcinoma. 2021. Available from: https://clinicaltrials.gov/study/NCT04913480.
A phase II, open-label, multi-cohort, multicenter study in patients with unresectable hepatocellular carcinoma and Child-Pugh B7 and B8 cirrhosis. 2023. Available from: https://clinicaltrials.gov/study/NCT06096779.
Intra-tumor delivery of double checkpoint inhibitors, chemodrug, and/or bevacizumab therapy as first line for hepatocellular carcinoma. 2024. Available from: https://clinicaltrials.gov/study/NCT06482801.
A single-arm, prospective, open clinical study of palbociclib for backline treatment of advanced hepatocellular carcinoma. 2024. Available from: https://clinicaltrials.gov/study/NCT06478927.
Phase 1/2 open-label study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of OTX-2002 as a single agent and in combination with standard of care in patients with hepatocellular carcinoma and other solid tumor types known for association with the MYC oncogene. 2022. Available from: https://clinicaltrials.gov/study/NCT05497453.
A phase II randomized study of atezolizumab plus multi-kinase inhibitor versus multi-kinase inhibitor alone in subjects with unresectable, advanced hepatocellular carcinoma who previously received atezolizumab plus bevacizumab. 2021. Available from: https://clinicaltrials.gov/study/NCT05168163.
A phase 1/2 exploratory study of the TBL1 inhibitor, tegavivint (BC2059), in patients with advanced hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05797805.
Lenvatinib combined toripalimab in advanced hepatocellular carcinoma: a single-center, single-arm, non-randomized clinical study. 2020. Available from: https://clinicaltrials.gov/study/NCT04368078.
Adjuvant treatment of patients with high risk of recurrent hepatocellular carcinoma after radical surgery with donafenib in combination with envafolimab: a prospective, multicentre, single-arm phase II clinical study. 2024. Available from: https://clinicaltrials.gov/study/NCT06498622.
A phase II study of transcatheter arterial chemoembolization (TACE) combined with anti-PD-1 antibody (IBI308) in patients with advanced hepatocellular carcinoma. 2020. Available from: https://clinicaltrials.gov/study/NCT04297280.
Phase II study evaluating the efficacy of tremelimumab (T) plus durvalumab (D) with lenvatinib combined with concurrent hepatic arterial infusion chemotherapy (HAIC) in patients (Pts) with unresectable hepatocellular carcinoma (uHCC). 2024. Available from: https://clinicaltrials.gov/study/NCT06364007.
Hepatic artery infusion chemotherapy (HAIC) combined with camrelizumab and tyrosine kinase inhibitor for unresectable hepatocellular carcinoma after transcatheter arterial chemoembolization (TACE) failure: a single-arm and open-label prospective study. 2021. Available from: https://clinicaltrials.gov/study/NCT05135364.
Combined hepatic arterial infusion chemotherapy, tyrosine kinase inhibitor/ anti-VEGF antibody, and anti-PD-1/ PD-L1 antibody as conversion therapy for unresectable hepatocellular carcinoma. 2023. Available from: https://clinicaltrials.gov/study/NCT05713994.
Phase II study of FGFR inhibitor futibatinib in combination with anti-PD-1 antibody pembrolizumab in patients with advanced or metastatic hepatocellular carcinoma with FGF19 expression after first line therapy. 2021. Available from: https://clinicaltrials.gov/study/NCT04828486.
An observational study in patients with unresectable hepatocellular carcinoma (uHCC) following treatment with atezolizumab plus bevacizumab (AB) or with another approved immuno-oncology immune checkpoint inhibitor combination in first-line. 2023. Available from: https://clinicaltrials.gov/study/NCT06117891.
Combined transarterial chemoembolization, tyrosine kinase inhibitor/ anti-VEGF antibody, and anti-PD-1/ PD-L1 antibody as conversion therapy for advanced hepatocellular carcinoma: a multicenters, real-world, ambispective cohort study. 2023. Available from: https://clinicaltrials.gov/study/NCT05717738.
A study to evaluate the effects of radiotherapy combined with tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody for stage IIIA hepatocellular carcinoma with portal vein tumor thrombus (PVTT). 2023. Available from: https://clinicaltrials.gov/study/NCT06061445.
A pilot study of a DNAJB1-PRKACA fusion kinase peptide vaccine combined with nivolumab and ipilimumab for patients with fibrolamellar hepatocellular carcinoma. 2020. Available from: https://clinicaltrials.gov/study/NCT04248569.
Efficacy of HAIC combined with lenvatinib and PD-1 inhibitor in infiltrative hepatocellular carcinoma: an observational, real-world study. 2024. Available from: https://clinicaltrials.gov/study/NCT06333561.
Safety and efficacy study of durvalumab in combination with lenvatinib in participants with locally advanced and metastatic hepatocellular carcinoma-- DULECT2020-1 trial. 2020. Available from: https://clinicaltrials.gov/study/NCT04443322.
Trametinib combined with everolimus and lenvatinib in the treatment of recurrent/refractory advanced solid tumors: a phase II clinical trial. 2021. Available from: https://clinicaltrials.gov/study/NCT04803318.
Efficacy of locoregional therapy combined with bevacizumab and PD1/L1 inhibitor in advanced hepatocellular carcinoma: a multicenter, observational, real-world study. 2024. Available from: https://clinicaltrials.gov/study/NCT06323382.
Phase II trial of palliative hypofractionated radiotherapy followed by durvalumab (MEDI4736) with/without tremelimumab for advanced hepatocellular carcinoma after progression on prior PD-1 inhibition. 2020. Available from: https://clinicaltrials.gov/study/NCT04430452.
Intra-tumor injection of drug-eluting microspheres loading with chemodrug plus checkpoint inhibitors and IL2 for treatment of advanced solid tumors. 2020. Available from: https://clinicaltrials.gov/study/NCT04770207.
A multicentric national phase II trial assessing TIslelizumab in monotherapy for patients with hepatocellular carcinoma Child-Pugh B and ALBI grade 1 or 2 liver function score. 2022. Available from: https://clinicaltrials.gov/study/NCT05622071.
A phase 1B/2, open-label study of Q702 in combination with intravenous pembrolizumab in patients with selected advanced solid tumors. 2022. Available from: https://clinicaltrials.gov/study/NCT05438420.
A phase II trial of cabozantinib in the treatment of recurrent hepatocellular carcinoma post liver transplant. 2019. Available from: https://clinicaltrials.gov/study/NCT04204850.
A single-arm, multicenter phase Ib clinical trial of the efficacy and safety of TQB2450 injection combined with anlotinib hydrochloride capsule neoadjuvant in the treatment of resectable hepatocellular carcinoma with a high risk of recurrence or metastasis. 2021. Available from: https://clinicaltrials.gov/study/NCT04888546.
Zeng Q, Klein C, Caruso S, Maille P, Laleh NG, Sommacale D, et al. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J Hepatol. 2022;77(1):116–27. ArticleCASPubMed Google Scholar
Calderaro J, Seraphin TP, Luedde T, Simon TG. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol. 2022;76(6):1348–61. ArticlePubMedPubMed Central Google Scholar