Tryptophan Metabolism in Affective Psychoses | The British Journal of Psychiatry | Cambridge Core (original) (raw)

Extract

Tryptophan has attracted attention during recent years for the possible role played by some of its metabolites in the aetiology and treatment of psychiatric disorders. Of these metabolites, serotonin has received special attention and considerable work has been carried out in order to elucidate its physiological and pharmacological actions. Studies from animal experiments are thus available on the function of serotonin in nervous activity (Marrazzi and Hart, 1955; Brodie et al., 1955; Pletscher et al., 1956; Welsh, 1957), but the results obtained thus far in psychiatric patients are uncertain. Recent researches in the affective psychoses (Burgermeister et al., 1963) did not reveal significant differences between patients and normal controls in the urinary output of 5-hydroxyindoleacetic acid (5-HIAA) before or after an oral 5-hydroxytryptophan load.

References

Benassi, C. A., Benassi, P., Allegri, G., and Ballarin, P. (1961). “Tryptophan metabolism in schizophrenic patients.” J. Neurochem., 7, 264–70.Google Scholar

Brodie, B. B., Pletscher, A., and Shore, P. A. (1955). “Evidence that serotonin has a role in brain function.”. Science, 122, 968.CrossRefGoogle Scholar

Burgermeister, J. J., Dick, P., Garonne, G., Guggisberg, M., and Tissot, R. (1963). “Excretion urinaire de l'acide 5-hydroxyindolacétique chez 150 malades atteints de syndrome dépressif et d'agitation maniaque.” Presse méd., 71, 1116–18.Google Scholar

Coppen, A., Shaw, D. M., and Farrell, J. P. (1963). “Potentiation of the antidepressive effect of a monoamine-oxidase inhibitor by tryptophan.” Lancet, Jan. 12, 79–81.CrossRefGoogle Scholar

Knox, W. E., and Mehler, A. H. (1951). “The adaptive increase of the typtophan peroxidase-oxidase system of liver.” Science, 113, 237–8.Google Scholar

Knox, W. E., and Mehler, A. H., and Auerbach, V. H. (1955). “The hormonal control of tryptophan peroxidase in the rat.” J. biol. Chem., 214, 307–13.CrossRefGoogle ScholarPubMed

Mangoni, A., and Mascherpa, G. (1963). “Alcuni aspetti del metabolismo del triptofano nelle psicosi affettive.” Lav. neuropsichiat., 33, 160–2.Google Scholar

Mangoni, A., Paolucci, A. M., and Spadoni, M. A. (1956). “Modificazioni dell’ azoto totale e dell’ attivitá triptofanoperossidasica del fegato di animali digiu-nanti normali e surrenectomizzati.” Quad. Nutr., 16, 115–22.Google Scholar

Marrazzi, A. S., and Hart, E. R. (1955). “Relationship of hallucinogens to adrenergic cerebral neurohumors.” Science, 121, 365–7.Google Scholar

Michael, A. F., Drummond, K. N., Doeden, D., Anderson, J. A., and Good, R. A. (1964). “Tryptophan metabolism in man.” J. clin. Invest., 43, 1730–46.CrossRefGoogle ScholarPubMed

Munro, H. N., Steele, M. H., and Hutchison, W. C. (1963.) “Blood corticosterone-levels in the rat after administration of amino-acids.” Nature, 199, 1182–3.CrossRefGoogle ScholarPubMed

Pletscher, A., Shore, P. A., and Brodie, B. B. (1956). “Serotonin as a mediator of reserpine action in brain.” J. Pharmacol, exp. Therap., 116, 84–89.Google ScholarPubMed

Price, J. M. (1954). “The determination of N-methyl-2-pyridone-5-carboxamide in human urine.” J. biol. Chem., 211, 117–24.CrossRefGoogle ScholarPubMed

Rosen, F., Lowy, R. S., and Sprince, H. (1951). “A rapid assay for xanthurenic acid in urine.” Proc. Soc. exper. Biol. Med., 77, 399–401.Google Scholar

Thomson, J. F., and Mikuta, E. T. (1954a). “Effect of total body X-irradiation on the tryptophan peroxidase activity of rat liver.” Proc. Soc. exp. Biol. Med., 85, 29–32.Google Scholar

Thomson, J. F., and Mikuta, E. T. (1954b). “The effect of cortisone and hydrocortisone on the tryptophan peroxidase-oxidase activity of rat liver.” Endocrinology, 55, 232–3.Google Scholar

Udenfriend, S., Titus, E., and Weissbach, H. (1955). “The identification of 5-hydroxy-3-indoleacetic acid in normal urine and a method for its assay.” J. biol. Chem., 216, 499–505.CrossRefGoogle Scholar

Welsh, J. H. (1957). “Serotonin as a possible neurohumoral agent: evidence obtained in lower animals.” Ann. N.Y. Acad. Sci., 66, 618–30.CrossRefGoogle ScholarPubMed

Woolley, D. W. (1962). The Biochemical Bases of Psychoses. John Wiley and Sons Inc., Ed., New York, London.Google Scholar

Yemm, E. W., and Cocking, E. C. (1955). “The determination of amino-acids with ninhydrin.” Analyst, 80, 209–13.Google Scholar