Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling.Biochemistry. 2001;40:4893–4903. ArticlePubMedCAS Google Scholar
Peterson BL, Cummings BS. A review of chromatographic methods for the assessment of phospholipids in biological samples.Biomed Chromatogr. 2006;20:227–243. ArticlePubMedCAS Google Scholar
Balazy M. Eicosanomics: targeted lipidomics of eicosanoids in biological systems.Prostaglandins Other Lipid Mediat. 2004;73:173–180. ArticlePubMedCAS Google Scholar
Rapaka RS, Piomelli D, Spiegel S, Bazan N, Dennis EA. Targeted lipidomics: signaling lipids and drugs of abuse.Prostaglandins Other Lipid Mediat. 2005;77:223–234. ArticlePubMedCAS Google Scholar
Belayev L, Marcheselli VL, Khoutorova L, et al. Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection.Stroke. 2005;36:118–123. ArticlePubMedCAS Google Scholar
Forrester JS, Milne SB, Ivanova PT, Brown HA. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction.Mol Pharmacol. 2004;65:813–821. ArticlePubMedCAS Google Scholar
Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics.J Lipid Res. 2003;44:1071–1079. ArticlePubMedCAS Google Scholar
Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction.Biochemistry. 2005;44:16684–16694. ArticlePubMedCAS Google Scholar
Hunt AN, Fenn HC, Clark GT, Wright MM, Postle AD, McMaster CR. Lipidomic analysis of the molecular specificity of a cholinephosphotransferase in situ.Biochem Soc Trans. 2004;32:1060–1062. ArticlePubMedCAS Google Scholar
Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression.J Biol Chem. 2003;278:43807–43817. ArticlePubMedCAS Google Scholar
Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry.Proc Natl Acad Sci USA. 1997;94:2339–2344. ArticlePubMedCAS Google Scholar
Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids.Mass Spectrom Rev. 2003:22:332–364. ArticlePubMedCAS Google Scholar
Schiller J, Suss R, Arnhold J, et al. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research.Prog Lipid Res. 2004;43:449–488. ArticlePubMedCAS Google Scholar
Fisher M, Brott TG. Emerging therapies for acute ischemic stroke: new therapies on trial.Stroke. 2003;34:359–361. ArticlePubMed Google Scholar
Siao CJ, Fernandez SR, Tsirka SE. Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury.J Neurosci. 2003;23:3234–3242. PubMedCAS Google Scholar
Adibhatla RM, Hatcher JF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia.Stroke. 2001;32:2376–2381. ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A2, hydroxyl radicals and lipid peroxidation in transient cerebral ischemia.Antioxid Redox Signal. 2003;5:647–654. ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF. Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia.J Neurosci Res. 2003;73:308–315. ArticlePubMedCAS Google Scholar
Muralikrishna Adibhatla R, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia.Free Radic Biol Med. 2006;40:376–387. ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF, Larsen EC, Chen X, Sun D, Tsao FH. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP-phosphocholine cytidylyltransferase after stroke.J Biol Chem. 2006;281:6718–6725. ArticlePubMedCAS Google Scholar
Lipton P. Ischemic cell death in brain neurons.Physiol Rev. 1999;79:1431–1568. PubMedCAS Google Scholar
Rao AM, Hatcher JF, Kindy MS, Dempsey RJ. Arachidonic acid and leukotriene C4: role in transient cerebral ischemia of gerbils.Neurochem Res. 1999;24:1225–1232. ArticlePubMedCAS Google Scholar
Rao AM, Hatcher JF, Dempsey RJ. CDP-choline: neuroprotection in transient forebrain ischemia of gerbils.J Neurosci Res. 1999;58:697–705. ArticlePubMedCAS Google Scholar
Rao AM, Hatcher JF, Dempsey RJ. Lipid metabolism in ischemic neuronal death.Recent Res Develop Neurochem. 1999;2:533–549. CAS Google Scholar
Rao AM, Hatcher JF, Dempsey RJ. Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection.J Neurochem. 2000;75:2528–2535. ArticlePubMedCAS Google Scholar
Rao AM, Hatcher JF, Dempsey RJ. Does CDP-choline modulate phospholipase activities after transient forebrain ischemia?Brain Res. 2001;893:268–272. ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF. Cytidine 5′-diphosphocholine (CDP-choline) in stroke and other CNS disorders.Neurochem Res. 2005;30:15–23. ArticlePubMedCAS Google Scholar
Ter Horst GJ, Korf J, eds.Clinical Pharmacology of Cerebral Ischemia. Totowa, NJ: Humana, 1997. Google Scholar
Choi DW. Methods for antagonizing glutamate neurotoxicity.Cerebrovasc Brain Metab Rev. 1990;2:105–147. PubMedCAS Google Scholar
Bazan NG. Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor.J Lipid Res. 2003;44:2221–2233. ArticlePubMedCAS Google Scholar
Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress.Brain Pathol. 2005;15:159–166. ArticlePubMedCAS Google Scholar
Bazan NG, Marcheselli VL, Cole-Edwards K. Brain response to injury and neurodegeneration: endogenous neuroprotective signaling.Ann NY Acad Sci. 2005;1053:137–147. ArticlePubMedCAS Google Scholar
Lukiw WJ, Cui J-G, Marcheselli VL, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease.J Clin Invest. 2005;115;2774–2783. ArticlePubMedCAS Google Scholar
Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress.Proc Natl Acad Sci USA. 2004;101:8491–8496. ArticlePubMedCAS Google Scholar
Cui Z, Houweling M. Phosphatidylcholine and cell death.Biochim Biophys Acta. 2002;1585:87–96. PubMedCAS Google Scholar
Freeman EJ, Terrian DM, Dorman RV. Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber nerve endings by arachidonic acid.Neurochem Res. 1990;15:743–750. ArticlePubMedCAS Google Scholar
Ruehr ML, Zhang L, Dorman RV. Lipid-dependent modulation of Ca2+ availability in isolated mossy fiber nerve endings.Neurochem Res. 1997;22:1215–1222. ArticlePubMedCAS Google Scholar
Jayadev S, Linardic CM, Hannun YA. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to TNF-α.J Biol Chem. 1994;269:5757–5763. PubMedCAS Google Scholar
Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis.Trends Biochem Sci. 1995;20:73–77. ArticlePubMedCAS Google Scholar
Perry DK, Hannun YA. The role of ceramide in cell signaling.Biochim Biophys Acta. 1998;1436:233–243. PubMedCAS Google Scholar
Kinloch RA, Treherne JM, Furness LM, Hajimohamadreza I. The pharmacology of apoptosis.Trends Pharmacol Sci. 1999;20:35–42. ArticlePubMedCAS Google Scholar
Goswami R, Dawson G. Does ceramide play a role in neural cell apoptosis?J Neurosci Res. 2000;60:141–149. ArticlePubMedCAS Google Scholar
Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandezcheca JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species—role of mitochondrial glutathione.J Biol Chem. 1997;272:11369–11377. ArticlePubMedCAS Google Scholar
Ghafourifar P, Klein SD, Schucht O, et al. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state.J Biol Chem. 1999;274:6080–6084. ArticlePubMedCAS Google Scholar
Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis—the role of cytochrome c.Biochim Biophys Acta. 1998;1366:139–149. ArticlePubMedCAS Google Scholar
Cai J, Jones DP. Superoxide in apoptosis—mitochondrial generation triggered by cytochrome c loss.J Biol Chem. 1998;273:11401–11404. ArticlePubMedCAS Google Scholar
Hoch FL. Cardiolipins and biomembrane function.Biochim Biophys Acta. 1992;1113:71–133. PubMedCAS Google Scholar
Nakahara I, Kikuchi H, Taki W, et al. Degradation of mitochondrial phospholipids during experimental cerebral ischemia in rats.J Neurochem. 1991;57:839–844. ArticlePubMedCAS Google Scholar
Nakahara I, Kikuchi H, Taki W, et al. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain.J Neurosurg. 1992;76:244–250. ArticlePubMedCAS Google Scholar
Rimon G, Bazenet CE, Philpott KL, Rubin LL. Increased surface phosphatidylserine is an early marker of neuronal apoptosis.J Neurosci Res. 1997;48:563–570. ArticlePubMedCAS Google Scholar
Suzuki S, Furushiro M, Takahashi M, Sakai M, Kudo S. Oral administration of soybean lecithin transphosphatidylated phosphatidylserine (SB-tPS) reduces ischemic damage in the gerbil hippocampus.Jpn J Pharmacol. 1999;81:237–239. ArticlePubMedCAS Google Scholar
Katsuki H, Okuda S. Arachidonic acid as a neurotoxic and neurotrophic substance.Prog Neurobiol., 1995;46:607–636. ArticlePubMedCAS Google Scholar
Kruman I, Brucekeller AJ, Bredesen D, Waeg G, Mattson MP. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis.J Neurosci. 1997;17:5089–5100. PubMedCAS Google Scholar
Uchida K, Kanematsu M, Sakai K, et al. Protein-bound acrolein—potential markers for oxidative stress.Proc Natl Acad Sci USA. 1998;95:4882–4887. ArticlePubMedCAS Google Scholar
Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease.J Neurochem. 1999;72:751–756. ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF. Citicoline mechanisms and clinical efficacy in cerebral ischemia.J Neurosci Res. 2002;70:133–139. ArticlePubMedCAS Google Scholar
Adibhatla RM, Hatcher JF, Dempsey RJ. Cytidine-5′-diphosphocholine (CDP-choline) affects CTP-phosphocholine cytidylyltransferase and lyso-phosphatidylcholine after transient brain ischemia.J Neurosci Res. 2004;76:390–396. ArticlePubMedCAS Google Scholar
Williams TI, Lynn BC, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer's disease.Neurobiol Aging. In press.
Urabe T, Hattori N, Yoshikawa M, Yoshino H, Uchida K, Mizuno Y. Colocalization of Bcl-2 and 4-hydroxynomenal modified proteins in microglial cells and neurons of rat brain following transient focal ischemia.Neurosci Lett. 1998;247:159–162. ArticlePubMedCAS Google Scholar
Urabe T, Yamasaki Y, Hattori N, Yoshikawa M, Uchida K, Mizuno Y. Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in the gerbil brain.Neuroscience. 2000;100:241–250. ArticlePubMedCAS Google Scholar
Uchida K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki E. Acrolein is a product of lipid peroxidation reaction—formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins.J Biol Chem. 1998;273:16058–16066. ArticlePubMedCAS Google Scholar
Tomitori H, Usui T, Saeki N, et al. Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke.Stroke. 2005;36:2609–2613. ArticlePubMedCAS Google Scholar
Liu X, Lovell MA, Lynn BC. Development of a method for quantification of acrolein-deoxyguanosine adducts in DNA using isotope dilution-capillary LC/MS/MS and its application to human brain tissue.Anal Chem. 2005;77:5982–5989. ArticlePubMedCAS Google Scholar
Cejka D, Losert D, Wacheck V. Short interfering RNA (siRNA): tool or therapeutic?Clin Sci (Lond). 2006;110:47–58. ArticleCAS Google Scholar
Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment siRNAs as small molecule drugs.Gene Ther. 2006;13:541–552. ArticlePubMedCAS Google Scholar
Wang L, Magdaleno S, Tabas I, Jackowski S. Early embryonic lethality in mice with targeted deletion of the CTP:phosphocholine cytidylyltransferase alpha gene (Pcytla).Mol Cell Biol. 2005;25:3357–3363. ArticlePubMedCAS Google Scholar
Klein J. Functions and pathophysiological roles of phospholipase D in the brain.J Neurochem. 2005;94:1473–1487. ArticlePubMedCAS Google Scholar
Pettus BJ, Bielawski J, Porcelli AM, et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α.FASEB J. 2003;17:1411–1421. ArticlePubMedCAS Google Scholar