Vesicular monoamine transporter 2: Role as a novel target for drug development (original) (raw)
Yelin R, Schuldiner S. Vesicular neurotransmitter transporters: pharmacology, biochemistry, and molecular analysis. In: Reith MEA, ed Neurotransmitter Transporters: Structure, Function, and Regulation 2nd Totowa, NJ: Humana Press; 2002:313–354. Google Scholar
Erickson JD, Eiden LE, Hoffiman BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA. 1992;89:10993–10997. PubMedCAS Google Scholar
Lin Y, Peter D, Roghani A, et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992;70:539–551. Google Scholar
Erickson J, Eiden L. Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem. 1993, 61:2314–2317. PubMedCAS Google Scholar
Erickson JD, Schaefer MKH, Bonner TI, Eiden LE, Weihe E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA. 1996;93:5166–5171. PubMedCAS Google Scholar
Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH. Differential expression of two vesicular monoamine transporters. J Neurosci. 1995;15:6179–6188. PubMedCAS Google Scholar
Weihe E, Schafer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci. 1994;5:149–164. PubMedCAS Google Scholar
Hansson SR, Mezey E, Hoffman BJ. Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2, II: expression in neural creast derivatives and their target sites in the rat. Brain Res Dev Brain Res. 1998;110:159–174. PubMedCAS Google Scholar
Peter D, Jimenez J, Lin Y, Kim J, Edwards RH. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J Biol Chem. 1994;269:7231–7237. PubMedCAS Google Scholar
Pletscher A. Effect of neuroleptics and other drugs on monoamine uptake by membranes of adrenal chromaffin granules. Br J Pharmacol. 1977;59:419–424. PubMedCAS Google Scholar
Scherman D, Henry JP. Reserpine binding to bovine chromaffin granule membranes. Mol Pharmacol. 1984;25:113–122. PubMedCAS Google Scholar
Darchen F, Scherman D, Henry JP. Reserpine binding to chromaffin granules suggests the existence of two conformations of the monoamine transporter. Biochemistry. 1989;28:1692–1697. PubMedCAS Google Scholar
Henry JP, Scherman D. Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem Pharmacol. 1989;38:2395–2404. PubMedCAS Google Scholar
Scherman D, Jaudon P, Henry JP. Characterization of the monoamine carrier of chromaffin granule membrane by binding of [2–3H]dihydrotetrabenazine. Proc Natl Acad Sci USA. 1983;80:584–588. PubMedCAS Google Scholar
Cohen G, Kesler N. Monoamine oxidase and mitochondrial respiration. J Neurochem. 1999;73:2310–2315. PubMedCAS Google Scholar
Lin Y, Edwards RH. The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci. 1997;20:125–156. CAS Google Scholar
Langston JW. The etiology of Parkinson's disease with emphasis on the MPTP story. Neurology, 1996;47:S153-S160. PubMedCAS Google Scholar
Snyder SH, D'Amato RJ. MPTP: a neurotoxin relevant to the pathophysiology of Parkinson's disease. Neurology. 1986:36:250–258. PubMedCAS Google Scholar
Jenner P, Schapira AHV, Marsden CD. New insights into the cause of Parkinson's disease. Neurology. 1992;42:2241–2250. PubMedCAS Google Scholar
Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Ann Neurol. 1992;32:S82-S87. PubMedCAS Google Scholar
German DC, Sonsalla PK. A role for the vesicular monoamine transporter (VMAT2) in Parkinson's disease. Adv Behav Biol. 2003;54:131–137. CAS Google Scholar
Adams JD, Jr, Chang ML, Klaidman L. Parkinson's disease—redox mechanisms. Curr Med Chem. 2001;8:809–814. PubMedCAS Google Scholar
Scherman D, Darchen F, Desnos C, Henry JP. 1-Methyl-4-phenylpyridinium is a substrate of the vesicular monoamine uptake system of chromaffin granules. Eur J Pharmacol. 1988:146:359–360. PubMedCAS Google Scholar
Daniels AJ, Jr, Reinhard JF, Jr. Energy-driven uptake of the neurotoxin 1-methyl-4-phenylpyridine into chromaffin granules via the catecholamine transporter. J Biol Chem. 1988;263:5034–5036. PubMedCAS Google Scholar
Darchen F, Scherman D, Henry JP. Characteristics of the transport of quaternary ammonium 1-methyl-4-phenylpyridine by chromaffin granules. Biochem Pharmacol. 1988;37:4381–4387. PubMedCAS Google Scholar
Del Zompo M, Piccardi MP, Ruiu S, Quartu M, Gessa GL, Vaccari A. Selective MMP+ uptake into synaptic dopamine vesicles: possible involvement in MPTP neurotoxicity. Br J Pharmacol. 1993;109:411–414. PubMed Google Scholar
Moriyama Y, Amakatsu K, Futai M. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synpatic vesicles: a proton gradient, drives its uptake through monoamine transporter. Arch Biochem Biophys. 1993:305:271–277. PubMedCAS Google Scholar
Takahashi N, Miner LL, Sora I, et al. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA. 1997;94:9938–9943. PubMedCAS Google Scholar
Speciale SG, Liang CL, Sonsalla PK, Edwards RH, German DC, The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. Neuroscience. 1998;84:1177–1185. PubMedCAS Google Scholar
Gainetdinov RR, Fumagalli F, Wang YM, et al.. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem. 1998;70:1973–1978. PubMedCAS Google Scholar
German DC, Liang CL, Manaye KF, Lane K, Sonsalla PK. Pharmacological inactivation of the vesicular monoamine transporter can enhance 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of midbrain dopaminergic, neurons, but not locus coeruleus noradrenergic neurons. Neuroscience. 2000;101:1063–1069. PubMedCAS Google Scholar
Staal RGW, Sonsalla PK. Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J Pharmacol Exp Ther. 2000;293:336–342. PubMedCAS Google Scholar
Mooslehner KA, Chan PM, Xu W, et al. Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism. Mol Cell Biol. 2001;21:5321–5331. PubMedCAS Google Scholar
Fumagalli F, Gainetdinov RR, Wang, YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci. 1999;19:2424–2431. PubMedCAS Google Scholar
Kariya S, Takahashi N, Hirano M, Ueno S. Increased vulnerability to L-DOPA toxicity in dopaminergic neurons from VMAT2 heterozygote knockout mice. J Mol Neurosci. 2005;27:277–280. PubMedCAS Google Scholar
Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B, Gain-of-function haplotypes in the vesicular monoamine transporter prom oter are protective for Parkinson disease in women. Hum Mol Genet. 2005;15:299–305. PubMed Google Scholar
Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits. J Pharmacol Exp Ther. 2002:304:1181–1187. Google Scholar
Hanson GR, Sandoval V, Riddle E, Fleckenstein AE. Psychostimulants and vesicle trafficking: a novel mechanism and therapeutic implications. Ann NY Acad Sci.. 2004;1025:146–150. PubMedCAS Google Scholar
Hall ED, Andrus PK, Oostveen JA, Althaus JS, Von Voigtlander PF. Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res. 1996;742:80–88. PubMedCAS Google Scholar
Sethy VH, Wu H, Oostveen JA, Hall ED. Neuroprotective effects of the dopamine agonist pramipexole and bromocriptine in 3-acetylpyridine-treated rats. Brain Res. 1997;754:181–186. PubMedCAS Google Scholar
Truong JG, Rau KS, Hanson GR, Fleckenstein AE. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson's neurodegeneration. Eur J Pharmacol 2003;474:223–226. PubMedCAS Google Scholar
Amara SG, Sonders MS. Neurotransmitter transporters as molecular targets for addictive drugs Drug Alcohol Depend. 1998;51:87–96. PubMedCAS Google Scholar
Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94:469–492. PubMedCAS Google Scholar
Koob GF. Neural mechanisms of drug reinforcement. Ann N Y Acad Sci. 1992;654:171–191. PubMedCAS Google Scholar
Fleckenstein AE, Hanson GR. Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol. 2003;479:283–289. PubMedCAS Google Scholar
Riddle EL, Fleckenstein AE, Hanson GR. Role of monoamine transporters in mediating psychostimulant effects. AAPS J. 2005;7:E847-E851 serial online. PubMedCAS Google Scholar
Brown JM, Hanson GR, Fleckenstein AE. Regulation of the vesicular monoamine transporter-2: a novel mechanism for cocaine and other psychostimulants. J Pharmacol Exp Ther. 2001;296:762–767. PubMedCAS Google Scholar
Sulzer D, Maidment NT, Rayport S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem. 1993;60:527–535. PubMedCAS Google Scholar
Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15:4102–4108. PubMedCAS Google Scholar
Johnson RG. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev. 1988;68:232–307. PubMedCAS Google Scholar
Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron. 1990;5:797–808. PubMedCAS Google Scholar
Brown JM, Hanson GR, Fleckenstein AE. Methamphetamine rapidly decreases vesicular dopamine uptake. J Neurochem. 2000;74:2221–2223. PubMedCAS Google Scholar
Wang Y, Gainetdinov RR, Fumagalli F, et al., Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron. 1997;19:1285–1296. PubMedCAS Google Scholar
Pletscher A, Brossi A, Gey KF. Benzoquinolizine derivatives: a new class of monoamine decreasing drugs with psychotropic action. Int Rev Neurobiol. 1962;4:275–306. Google Scholar
Pettibone DJ, Pflueger AB, Totaro JA. Tetrabenazine-induced depletion of brain monoamines: mechanism by which desmethylimipramine protects cortical norepinephrine. Eur J Pharmacol. 1984;102:431–436. PubMedCAS Google Scholar
Brossi A, Lindlar H, Walter M, Schnider O. Synthesis in the emetine series, I: 2-oxohydrobenzo[a]quinolizines. Helv Chim Acta. 1958;41:1793–1806. CAS Google Scholar
Kenney C, Jankovic J. Tetrabenazine in the treatment of hyperkinetic movement disorders. Expert Rev Neurother. 2006;6:7–17. PubMedCAS Google Scholar
Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease. Neurology. 2006;66:366–372. Google Scholar
Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology. 1997;48:358–362. PubMedCAS Google Scholar
Reches A, Burke RE, Kuhn CM, Hassan MN, Jackson VR, Fahn S. Tetrabenazine, an amine-depleting drug, also blocks dopamine receptors in rat brain. J Pharmacol Exp Ther. 1983;225:515–521. PubMedCAS Google Scholar
DaSilva JN, Kilbourn MR, Mangner TJ. Synthesis of [11C]tetrabenazine a vesicular monoamine uptake inhibitor, for PET imaging studies. Appl Radiat Isot. 1993;44:673–676. PubMedCAS Google Scholar
Kilbourn MR, DaSilva JN, Frey KA, Koeppe RA, Kuhl DE. In vivo imaging of vesicular monoamine transporters in human brain using [11C]tetrabenazine and positron emission tomography. J Neurochem. 1993;60:2315–2318. PubMedCAS Google Scholar
DaSilva JN, Kilbourn MR, Domino EF. In vivo imaging of monoaminergic nerve terminals in normal and MPTP-lesioned primate brain using positron emission tomography (PET) and [11C]tetrabenazine. Synapse. 1993;14:128–131. PubMedCAS Google Scholar
DaSilva JN, Carey JE, Sherman PS, Pisani TJ, Kilbourn MR. Characterization of [11C]tetrabenazine as an in vivo radioligand for the vesicular monoamine transporter. Nucl Med Biol. 1994;21:151–156. PubMedCAS Google Scholar
Kilbourn MR. PET radioligands for vesicular neurotransmitter transporters. Med Chem Res. 1994;5:113–126. Google Scholar
Schwartz DE, Bruderer H, Rieder J, Brossi A. Metabolic studies of tetrabenazine, a psychotropic drug in animals and man. Biochem Pharmacol. 1966;15:645–655. PubMedCAS Google Scholar
Scherman D, Raisman R, Ploska A, Agid Y. [3H]Dihydrotetrabenazine, a new in vitro monoaminergic probe for human brain. J Neurochem. 1988;50:1131–1136. PubMedCAS Google Scholar
Masuo Y, Pelaprat D, Scherman D, Rostene W. [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett. 1990;114:45–50. PubMedCAS Google Scholar
Zucker M, Weizman A, Rehavi M. Characterization of high-affinity [3H]TBZOH binding to the human platelet vesicular monoamine transporter. Life Sci. 2001;69:2311–2317. PubMedCAS Google Scholar
Jewett DM, Kilbourn MR, Lee LC. A simple synthesis of[11C]dihydrotetrabenazine (DTBZ). Nucl Med Biol. 1997;24:197–199. PubMedCAS Google Scholar
Koeppe RA, Frey KA, Kume A, Albin R, Kilbourn MR, Kuhl DE. Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)-[11C]dihydrotetrabenazine (DTBZ) and positron emission tomography. J Cereb Blood Flow Metab. 1997;17:919–931. PubMedCAS Google Scholar
DaSilva JN, Kilbourn MR, Mangner TJ. Synthesis of a [11C]methoxy derivative of alpha-dihydrotetrabenazine: a radioligand for studying the vesicular monoamine transporter. Appl Radiat Isot. 1993;44:1487–1489. PubMedCAS Google Scholar
Kilbourn MR, Lee LC, Heeg MJ, Jewett DM. Absolute configuration of (+)-dihydrotetrabenazine, an active metabolite of tetrabenazine. Chirality. 1997;9:59–62. PubMedCAS Google Scholar
Kilbourn MR, Lee L, Vander Borght T, Jewett D, Frey K. Binding of alpha-dihydrotetrabenazine to the vesicular monoamine transporter is stereospecific. Eur J Pharmacol. 1995;278:249–252. PubMedCAS Google Scholar
Kilbourn MR, Lee LC, Jewett DM, Vander Borght TM, Koeppe RA, Frey KA. In vitro and in vivo binding of α-dihydrotetrabenazine to the vesicular monoamine transporters is stereospecific. J Cereb Blood Flow Metab. 1995;15:S650. Google Scholar
Clarke I, Turtle R, Johnston G, inventors. Cambridge Laboratories Limited, UK, assignee. Preparation of dihydrotetrabenazines with affinity for monoamine transporters for use in pharmaceutical compositions for the treatment of hyperkinetic disorders. WO 2 005 077 946. February 11, 2005.
Tridgett R, Clarke I, Turtle R, Johnston G, inventors. Cambridge Laboratories Limited, UK, assignee. Preparation of dihydrotetrabenazine isomers for the treatment of hyperkinetic movement disorders. GB 2 410 947. February 11, 2004.
Vander Borght TM, Sima AAF, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA. [3H]Methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience. 1995;68:955–962. Google Scholar
Vander Borght TM, Kilbourn MR, Koeppe RA, et al. In vivo imaging of the brain vesicular monoamine transporter. J Nucl Med. 1995;36:2252–2260. Google Scholar
Kilbourn MR, Sherman PS, Abbott LC. Mutant mouse strains as models for in vivo radiotracer evaluations: [11C]methoxytetrabenazine ([11C]MTBZ) in tottering mice. Nucl Med Biol. 1995;22:565–567. PubMedCAS Google Scholar
F. Hoffmann-La Roche & Co inventor. F. Hoffmann-La Roche & Co, assignee. Substituted 2-hydroxy-1,2,3,4,6,7-hexahydrobenzo[a]quin olizines and their salts. GB 839 105. June 29, 1960.
F. Hoffmann-La Roche & Co. inventor. F. Hoffmann-La Roche & Co, assignee. Benzo[a]quinolizine derivatives. BE 633 559. December 13, 1963.
F. Hoffmann-La Roche & Co. inventor. F. Hoffmann-La Roche & Co, assignee. Substituted tetrahydrobenzo[a]quinolizines. BE 636 798. March 2, 1964.
Lee LC, Vander Borght T, Sherman PS, Frey KA, Kilbourn MR. In vitro and in vivo studies of benzoisoquinoline ligands for the brain synaptic vesicle monoamine transporter. J Med Chem. 1996;39:191–196. PubMedCAS Google Scholar
Canney DJ, Guo YZ, Kung MP, Kung HF. Synthesis and preliminary evaluation of an iodovinyl-tetrabenazine analog as a marker for the vesicular monoamine transporter. J Labelled Compd Radiopharm. 1993;33:355–368. CAS Google Scholar
Kung MP, Canney DJ, Frederick D, Zhuang Z, Billings JJ, Kung HF. Binding of 125I-iodovinyltetrabenazine to CNS vesicular monoamine transport sites. Synapse. 1994;18:225–232. PubMedCAS Google Scholar
Clarke FH, Hill RT, Koo J, et al.. A series of hexahydro[1,4]oxazino [3,4-a]isoquinolines as potential neuroleptics. J Med Chem. 1978;21:785–791. PubMedCAS Google Scholar
Fahrenholtz KE, Capomaggi A, Lurie M, Goldberg MW, Kierstead RW. Octahydrophenanthrene analogs of tetrabenazine. J Med Chem. 1966;9:304–310. PubMedCAS Google Scholar
Saner A, Pletscher A. A benzo[a]quinolizine derivative with a neuroleptic-like action on cerebral monoamine turnover. J Pharmacol Exp Ther. 1977;203:556–563. PubMedCAS Google Scholar
Harnden MR, Short JH. 2-Thio-1,3,4,6,7,11b-hexahydro-9,10-dimethoxy-2H-benzo[a]quinolizines. J Med Chem. 1967;10:1183–1184. PubMedCAS Google Scholar
Aranda G, Beaucourt JP, Ponchant M, Isambert MF, Henry JP. Synthesis and biological activity of iodinated and photosensitive derivatives of tetrabenazine. Eur J Med Chem 1990;25:369–374. CAS Google Scholar
Scherman D, Gasnier B, Jaudon P, Henry JP. Hydrophobicity of the tetrabenazine-binding site of the chromaffin granule monoamine transporter. Mol Pharmacol. 1988;33:72–77. PubMedCAS Google Scholar
Canney DJ, Kung MP, Kung HF. Amino- and amidotetrabenazine derivatives: synthesis and evaluation as potential ligands for the vesicular monoamine transporter. Nucl Med Biol. 1995;22:527–535. PubMedCAS Google Scholar
Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM. [3H]Ketanserin (R-4-1468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982;21:301–314. PubMedCAS Google Scholar
Darchen F, Scherman D, Laduron PM, Henry JP. Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol. 1988;33:672–677. PubMedCAS Google Scholar
Henry JP, Gasnier B, Isambert MF, Darchen F, Scherman D. Ketanserin as a ligand of the vesicular monoamine transporter. Adv Biosci. 1991;82:147–150. CAS Google Scholar
Leysen JE, Eens A, Gommeren W, Van Gompel P, Wynants J, Janssen PAJ. Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin-and tetrabenazine-like drugs. J Pharmacol Exp Ther. 1988;244:310–321. PubMedCAS Google Scholar
Isambert MF, Gasnier B, Laduron PM, Henry JP. Photoaffinity labeling of the monoamine transporter of bovine chromaffin granules and other monoamine storage vesicles using 7-azido-8-[125I]iodoketanserin. Biochemistry. 1989;28:2265–2270. PubMedCAS Google Scholar
Yamada S, Isogai M, Kagawa Y, et al. Brain nicotinic acetylcholine receptors: biochemical characterization by neosurugatoxin. Mol Pharmacol. 1985;28:120–127. PubMedCAS Google Scholar
Lippiello PM, Fernandes KG. The binding of L-[3H]nicotine to a single class of high affinity sites in rat brain membranes. Mol Pharmacol. 1986;29:448–454. PubMedCAS Google Scholar
Banerjee S, Abood LG. Nicotine antagonists: phosphoinositide turnover and receptor binding to determine muscarinic properties. Biochem Pharmacol. 1989;38:2933–2935. CAS Google Scholar
Broussolle EP, Wong DF, Fanelli RJ, London ED. In vivo specific binding of [3H]L-nicotine in the mouse brain. Life Sci. 1989;44:1123–1132. PubMedCAS Google Scholar
Damaj MI, Patrick GS, Creasy KR, Martin BR. Pharmacology of lobeline, a nicotinic receptor ligand. J Pharmacol Exp Ther. 1997;282:410–419. PubMedCAS Google Scholar
Barlow RB, Johnson O. Relations between structure and nicotine-like activity: X-ray crystal structure analysis of (−)-cytisine and (−)-lobeline hydrochloride and a comparison with (−)-nicotine and other nicotine-like compounds. Br J Pharmacol. 1989;98:799–808. PubMedCAS Google Scholar
Olin BR, Hebel SK, Gremp JL, Hulbertt MK. Smoking deterrents. In: Olin BR, Hebel SK, Gremp JL, Hulbertt MK, eds. Drug Facts and Comparisons. St. Louis, MO: JB Lippincott; 1995:3087–3095 Google Scholar
Sloan JW, Martin WR, Bostwick M, Hook R, Wala E. The competitive binding characteristics of nicotine ligands and their pharmacology. Pharmacol Biochem Behav. 1988;30:255–267. PubMedCAS Google Scholar
Brioni JD, O'Neill AB, Kim DJB, Decker MW. Nicotine receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol. 1993;238:1–8. PubMedCAS Google Scholar
Decker MW, Majchzark MJ, Arneric SP. Effects of lobeline, a nicotine receptor agonist, on learning and memory. Pharmacol Biochem Behav. 1993;45:571–576. PubMedCAS Google Scholar
Rasmussen T, Swedberg MDB. Reinforcing effects of nicotinic compounds: intravenous self-administration in drug-naive mice. Pharmacol Biochem Behav. 1998;60:567–573. PubMedCAS Google Scholar
Harrod SB, Dwoskin LP, Green TA, Gehrke BJ, Bardo MT. Lobeline does not serve as a reinforcer in rats. Psychopharmacology (Berl). 2003;165:397–404. CAS Google Scholar
Fudala PJ, Iwamoto ET. Further studies on nicotine-induced conditioned place preference in the rat. Pharmacol Biochem Behav. 1986;25:1041–1049. PubMedCAS Google Scholar
Stolerman IP, Garcha HS, Mirza NR. Dissociation between the locomotor stimulant and depressant effects of nicotinic agonists in rats. Psychopharmacology (Berl). 1995;117:430–437. CAS Google Scholar
Dwoskin LP, Crooks PA. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol. 2002;63:89–98. PubMedCAS Google Scholar
Gallardo KA, Leslie FM. Nicotine-stimulated release of [3H]norepinephrine from fetal, rat locus coeruleus cells in culture. J Neurochem. 1998;70:663–670. PubMedCAS Google Scholar
Miller DK, Crooks PA, Dwoskin LP. Lobeline inhibits nicotine-evoked [3H]dopamine overflow from rat striatal slices and nicotine-evoked 86Rb+ efflux from thalamic synaptosomes. Neuropharmacology. 2000;39:2654–2662. PubMedCAS Google Scholar
Miller DK, Crooks PA, Zheng G, Grinevich VP, Norrholm S, Dwoskin LP. Lobeline analogues with enhanced affinity and selectivity for plasmalemma and vesicular monoamine transporters. J Pharmacol Exp Ther. 2004;310:1035–1045. PubMedCAS Google Scholar
Briggs CA, McKenna DG. Activation and inhibition of the human alpha 7 nicotinic acetylcholine receptor by agonist binding affinity. Mol Pharmacol. 1998;37:1095–1102. CAS Google Scholar
Teng L, Crooks PA, Sonsalla PK, Dwoskin LP. Lobeline and nicotine evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. J Pharmacol Exp Ther. 1997;280:1432–1444. PubMedCAS Google Scholar
Teng L, Crooks PA, Dwoskin LP. Lobeline displaces [3H]dihydrotetrabenazine binding and releases [3H]dopamine from rat striatal synaptic vesicles: comparison with d-amphetamine. J Neurochem. 1998;71:258–265. ArticlePubMedCAS Google Scholar
Miller DK, Crooks PA, Teng L, et al. Lobeline inhibits the neurochemical and behavioral effects of amphetamine. J. Pharmacol Exp Ther. 2001;296:1023–1034. PubMedCAS Google Scholar
Miller DK, Harrod SB, Green TA, Wong MY, Bardo MT, Dwoskin LP. Lobeline attenuates the locomotor stimulation induced by repeated nicotine administration in rats. Pharmacol Biochem Behav. 2003;74:279–286. PubMedCAS Google Scholar
Harrod SB, Dwoskin LP, Crooks PA, Klebaur JE, Bardo MT. Lobeline attenuates d-methamphetamine self-administration in rats. J Pharmacol Exp Ther. 2001;298:172–179. PubMedCAS Google Scholar
Zheng G, Dwoskin LP, Deaciuc AG, Norrholm SD, Crooks PA. Defunctionalized lobeline analogues: structure-activity of novel ligands for the vesicular monoamine transporter. J Med Chem. 2005;48:5551–5560. PubMedCAS Google Scholar
Zheng G, Dwoskin LP, Deaciuc AG, Zhu J, Jones MD, Crooks PA. Lobelane analogues, as novel ligands for the vesicular monoamine transporter-2. Bioorg Med Chem. 2005;13:3899–3909. ArticlePubMedCAS Google Scholar
Zheng G, Dwoskin LP, Deaciuc AG, Crooks PA. Synthesis and evaluation of a series of tropane analogues as novel vesicular monoamine transporter-2 ligands. Bioorg Med Chem Lett. 2005;15:4463–4466. PubMedCAS Google Scholar
Perera RP, Wimalasena DS, Wimalasena K. Characterization of a series of 3-amino-2-phenyl-propene derivatives as novel bovine chromaffin vesicular monoamine transporter inhibitors. J Med Chem. 2003;46:2599–2605. PubMedCAS Google Scholar
Merickel A, Rosandich P, Peter D, Edwards, RH. Identification of residues involved in substrate recognition by a vesicular monoamine transporter. J Biol Chem. 1995;270:25798–25804. PubMedCAS Google Scholar
Merickel A, Kaback HR, Edwards RH. Charged residues in transmembrane domains II and XI of a vesicular monoamine transporter form a charge pair that promotes high affinity substrate recognition. J Biol Chem. 1997;272:5403–5408. PubMedCAS Google Scholar
Peter D, Vu T, Edwards RH. Chimeric vesicular monoamine transporters identify structural domains that influence substrate affinity and sensitivity to tetrabenazine. J Biol Chem. 1996;271:2979–2986. PubMedCAS Google Scholar
Finn JP, III, Edwards RH. Individual residues contribute to multiple differences in ligand recognition between vesicular monoamine transporters 1 and 2. J Biol Chem. 1997;272:16301–16307. PubMedCAS Google Scholar
Sievert MK, Ruoho AE. Peptide mapping of the [125I]iodoazidok etanserin and [125I]2-N-[(3′-iodo-4′-azidophenyl)propionyl]tetrabenazine binding sites for the synaptic vesicle monoamine transporter. J Biol Chem. 1997;272:26049–26055. PubMedCAS Google Scholar
Thiriot DS, Ruoho AE. Mutagenesis and derivatization of human vesicle monoamine transporter 2 (VMAT2) cysteines identifies transporter domains involved in tetrabenazine binding and substrate transport. J Biol Chem. 2001;276:27304–27315. PubMedCAS Google Scholar
Thiriot DS, Sievert MK, Ruoho AE. Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond. Biochemistry. 2002;41: 6346–6353. PubMedCAS Google Scholar