Fat facets and Liquid facets promote Delta endocytosis and Delta signaling in the signaling cells (original) (raw)
RESEARCH ARTICLE| 01 November 2004
Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
Search for other works by this author on:
Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
Search for other works by this author on:
Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
Search for other works by this author on:
Erin Overstreet
Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
Erin Fitch
Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
Janice A. Fischer*
Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
Online ISSN: 1477-9129
Print ISSN: 0950-1991
Development (2004) 131 (21): 5355–5366.
Endocytosis modulates the Notch signaling pathway in both the signaling and receiving cells. One recent hypothesis is that endocytosis of the ligand Delta by the signaling cells is essential for Notch activation in the receiving cells. Here, we present evidence in strong support of this model. We show that in the developing Drosophila eye Fat facets (Faf), a deubiquitinating enzyme, and its substrate Liquid facets (Lqf), an endocytic epsin, promote Delta internalization and Delta signaling in the signaling cells. We demonstrate that while Lqf is necessary for three different Notch/Delta signaling events at the morphogenetic furrow, Faf is essential only for one:Delta signaling by photoreceptor precluster cells, which prevents recruitment of ectopic neurons. In addition, we show that the ubiquitin-ligase Neuralized(Neur), which ubiquitinates Delta, functions in the signaling cells with Faf and Lqf. The results presented bolster one model for Neur function in which Neur enhances Delta signaling by stimulating Delta internalization in the signaling cells. We propose that Faf plays a role similar to that of Neur in the Delta signaling cells. By deubiquitinating Lqf, which enhances the efficiency of Delta internalization, Faf stimulates Delta signaling.
You do not currently have access to this content.
Sign in
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Email address / Username ?
Password
Could not validate captcha. Please try again.
Pay-Per-View Access
$30.00
Email alerts
2,399 Views
160 Web of Science
Cited by
Call for papers – The Extracellular Environment in Development, Regeneration and Stem Cells
The hard truth about how hard it is to publish in Development
More extraordinary model systems for regeneration

In this Perspective, we hear from José García-Arrarás, Chunyi Li, Tania Rozario, Mansi Srivastava and Andrew Willoughby, each of whom studies an amazing species with remarkable regenerative potential.
Save the date - Human Development: Stem Cells, Models, Embryos

We will be hosting a 2026 Human Development: Stem Cells, Models, Embryos meeting. We have teamed up with the Wellcome-funded consortium, the Human Developmental Biology Initiative (HDBI) to co-organise this event, which will bring together researchers from around the world, united by an interest in understanding human developmental biology. Save the date for 7-9 September 2026 and register.
Other journals from
The Company of Biologists