Impact of Dyslipidemia on the Risk of Second Cancer in Thyroid Cancer Patients: A Korean National Cohort Study (original) (raw)
Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG, Lee JS. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat. 2013;45(1):1–14. ArticleCASPubMedPubMed Central Google Scholar
Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7. ArticleCASPubMed Google Scholar
Kilfoy BA, Zheng T, Holford TR, et al. International patterns and trends in thyroid cancer incidence, 1973–2002. Cancer Causes Control. 2009;20(5):525–31. ArticlePubMed Google Scholar
Colonna M, Grosclaude P, Remontet L, et al. Incidence of thyroid cancer in adults recorded by French cancer registries (1978–1997). Eur J Cancer. 2002;38(13):1762–8. ArticleCASPubMed Google Scholar
Burgess JR. Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982–1997). Thyroid. 2002;12(2):141–9. ArticlePubMed Google Scholar
Liu S, Semenciw R, Ugnat AM, Mao Y. Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br J Cancer. 2001;85(9):1335–9. ArticleCASPubMedPubMed Central Google Scholar
Jung KW, Won YJ, Oh CM, Kong HJ, Lee DH, Lee KH. Prediction of cancer incidence and mortality in Korea, 2017. Cancer Res Treat. 2017;49(2):306–12. ArticlePubMedPubMed Central Google Scholar
Jung KW, Won YJ, Oh CM, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2014. Cancer Res Treat. 2017;49(2):292–305. ArticlePubMedPubMed Central Google Scholar
Burki TK. Unnecessary thyroid cancer screening in South Korea. Lancet Oncol. 2017;18(1):e6. ArticlePubMed Google Scholar
Jegerlehner S, Bulliard JL, Aujesky D, et al. Overdiagnosis and overtreatment of thyroid cancer: a population-based temporal trend study. PLoS One. 2017;12(6):e0179387. ArticlePubMedPubMed Central Google Scholar
Haymart MR, Esfandiari NH, Stang MT, Sosa JA. Controversies in the management of low-risk differentiated thyroid cancer. Endocr Rev. 2017;38(4):351–78. ArticlePubMedPubMed Central Google Scholar
Molenaar RJ, Sidana S, Radivoyevitch T, et al. Risk of hematologic malignancies after radioiodine treatment of well-differentiated thyroid cancer. J Clin Oncol. 2018;36(18):1831–9. ArticleCASPubMed Google Scholar
Iyer NG, Morris LG, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117(19):4439–46. ArticlePubMed Google Scholar
Seo GH, Cho YY, Chung JH, Kim SW. Increased risk of leukemia after radioactive iodine therapy in patients with thyroid cancer: a nationwide, population-based study in Korea. Thyroid. 2015;25(8):927–34. ArticlePubMed Google Scholar
Cho YY, Lim J, Oh CM, et al. Elevated risks of subsequent primary malignancies in patients with thyroid cancer: a nationwide, population-based study in Korea. Cancer. 2015;121(2):259–68. ArticlePubMed Google Scholar
Teng CJ, Hu YW, Chen SC, et al. Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst. 2016;108(2).
Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202. ArticlePubMed Google Scholar
Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. ArticlePubMed Google Scholar
Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46. ArticlePubMed Google Scholar
Kyrgiou M, Kalliala I, Markozannes G, et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ. 2017;356:j477. ArticlePubMedPubMed Central Google Scholar
Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer–viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–8. ArticlePubMedPubMed Central Google Scholar
Shin HR, Won YJ, Jung KW, et al. Nationwide cancer incidence in Korea, 1999–2001; first result using the national cancer incidence database. Cancer Res Treat. 2005;37(6):325–31. ArticlePubMedPubMed Central Google Scholar
Kim JA, Yoon S, Kim LY, Kim DS. Towards actualizing the value potential of Korea Health Insurance Review and Assessment (HIRA) data as a resource for health research: strengths, limitations, applications, and strategies for Optimal Use of HIRA Data. J Korean Med Sci. 2017;32(5):718–28. ArticlePubMedPubMed Central Google Scholar
Shin JY, Roughead EE, Park BJ, Pratt NL. Cardiovascular safety of methylphenidate among children and young people with attention-deficit/hyperactivity disorder (ADHD): nationwide self controlled case series study. BMJ. 2016;353:i2550. ArticlePubMedPubMed Central Google Scholar
Park B, Sung J, Park K, Seo S, Kim S. Report of the evaluation for validity of discharged diagnoses in Korean Health Insurance database. 2003.
Cho J, Choi YJ, Suh M, et al. Air pollution as a risk factor for depressive episode in patients with cardiovascular disease, diabetes mellitus, or asthma. J Affective Disorders. 2014;157:45–51. Article Google Scholar
Kimm H, Yun JE, Lee SH, Jang Y, Jee SH. Validity of the diagnosis of acute myocardial infarction in korean national medical health insurance claims data: the korean heart study (1). Korean Circ J. 2012;42(1):10–5. ArticlePubMedPubMed Central Google Scholar
Kim C, Jung SH, Kang DR, et al. Ambient particulate matter as a risk factor for suicide. Am J Psychiatry. 2010;167(9):1100–7. ArticlePubMed Google Scholar
Oh H, Boo S. Burns in South Korea: an analysis of nationwide data from the health insurance review and assessment Service. Burns. 2016;42(3):675–81. ArticlePubMed Google Scholar
Kim HS, Shin DW, Lee WC, Kim YT, Cho B. National Screening Program for Transitional Ages in Korea: a new screening for strengthening primary prevention and follow-up care. J Korean Med Sci. 2012;27:S70–5. ArticlePubMedPubMed Central Google Scholar
Kim C, Bi X, Pan D, et al. The risk of second cancers after diagnosis of primary thyroid cancer is elevated in thyroid microcarcinomas. Thyroid. 2013;23(5):575–82. ArticlePubMedPubMed Central Google Scholar
Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355(6331):1330–4. ArticleCASPubMedPubMed Central Google Scholar
Mehta N, Hordines J, Volpe C, Doerr R, Cohen SA. Cellular effects of hypercholesterolemia in modulation of cancer growth and metastasis: a review of the evidence. Surgical oncology. 1997;6(3):179–85. ArticleCASPubMed Google Scholar
Arliss RM, Biermann CA. Do soy isoflavones lower cholesterol, inhibit atherosclerosis, and play a role in cancer prevention? Holistic Nursing Practice. 2002;17(1):40–8. Article Google Scholar
Mutoh M, Akasu T, Takahashi M, et al. Possible involvement of hyperlipidemia in increasing risk of colorectal tumor development in human familial adenomatous polyposis. Jpn J Clin Oncol. 2006;36(3):166–71. ArticlePubMed Google Scholar
Swinnen JV, Heemers H, van de Sande T, et al. Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol. 2004;92(4):273–9. ArticleCASPubMed Google Scholar
Kimura Y, Sumiyoshi M. High-fat, high-sucrose, and high-cholesterol diets accelerate tumor growth and metastasis in tumor-bearing mice. Nutr Cancer. 2007;59(2):207–16. ArticleCASPubMed Google Scholar
Brown M, Hart C, Tawadros T, et al. The differential effects of statins on the metastatic behaviour of prostate cancer. Br J Cancer. 2012;106(10):1689–96. ArticleCASPubMedPubMed Central Google Scholar
Yasuda Y, Shimizu M, Shirakami Y, et al. Pitavastatin inhibits azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Cancer Sci. 2010;101(7):1701–7. ArticleCASPubMed Google Scholar
Cruz P, Torres C, Ramirez ME, Epunan MJ, Valladares LE, Sierralta WD. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol. Exp Ther Med. 2010;1(3):531–6. ArticleCASPubMedPubMed Central Google Scholar
Mondul AM, Weinstein SJ, Virtamo J, Albanes D. Serum total and HDL cholesterol and risk of prostate cancer. Cancer Causes Control. 2011;22(11):1545–52. ArticlePubMedPubMed Central Google Scholar
Oh HY, Lee EJ, Yoon S, Chung BH, Cho KS, Hong SJ. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate. 2007;67(10):1061–9. ArticleCASPubMed Google Scholar
Rubino C, de Vathaire F, Dottorini ME, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44. ArticleCASPubMedPubMed Central Google Scholar
Subramanian S, Goldstein DP, Parlea L, et al. Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid. 2007;17(12):1277–88. ArticlePubMed Google Scholar
Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family‐Cancer Database. Int J Ccancer. 2002;99(2):260-6.
Zhang F, Xu L, Wei Q, Song X, Sturgis EM, Li G. Significance of MDM2 and P14 ARF polymorphisms in susceptibility to differentiated thyroid carcinoma. Surgery. 2013;153(5):711–7. ArticlePubMed Google Scholar
Duan X, Li J. Association between MDM2 SNP309, p53 Arg72Pro, and hepatocellular carcinoma risk: A MOOSE-compliant meta-analysis. Medicine. 2017;96(36).
Do TN, Ucisik-Akkaya E, Davis CF, Morrison BA, Dorak MT. TP53 R72P and MDM2 SNP309 polymorphisms in modification of childhood acute lymphoblastic leukemia susceptibility. Cancer Genet Cytogenet. 2009;195(1):31–6. ArticleCASPubMed Google Scholar
Cybulski C, Gorski B, Huzarski T, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Gen. 2004;75(6):1131–5. ArticleCAS Google Scholar