Cloning and Characterization of Chemotaxis Genes in Pseudomonas aeruginosa (original) (raw)

Journal Article

,

Department of Fermentation Technology, Hiroshima University

Search for other works by this author on:

,

Department of Fermentation Technology, Hiroshima University

Search for other works by this author on:

,

Department of Fermentation Technology, Hiroshima University

Search for other works by this author on:

Department of Fermentation Technology, Hiroshima University

Search for other works by this author on:

Accepted:

21 September 1998

Published:

01 January 1999

Cite

Junichi KATO, Tetsuya NAKAMURA, Akio KURODA, Hisao OHTAKE, Cloning and Characterization of Chemotaxis Genes in Pseudomonas aeruginosa, Bioscience, Biotechnology, and Biochemistry, Volume 63, Issue 1, 1 January 1999, Pages 155–161, https://doi.org/10.1271/bbb.63.155
Close

Navbar Search Filter Mobile Enter search term Search

Abstract

Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC3 and PC4, were selected by the swarm plate method after _N_-methyl-_N_′-nitro-_N_-nitrosoguanidine mutagenesis. These mutants were not complemented by the P. aeruginosa cheY and cheZ genes, which had been previously cloned (Masduki et al., J. Bacteriol., 177, 948-952, 1995). DNA sequences downstream of the cheY and cheZ genes were able to complement PC3 but not PC4. Sequence analysis of a 9.7-kb region directly downstream of the cheZ gene found three chemotaxis genes, cheA, cheB, and cheW, and seven unknown open reading frames (ORFs). The predicted translation products of the cheA, cheB, and cheW genes showed 33, 36, and 31% amino acid identity with Escherichia coli CheA, CheB, and CheW, respectively. Two of the unknown ORFs, ORF1 and ORF2, encoded putative polypeptides that resembled Bacillus subtilis MotA (40% amino acid identity) and MotB (34% amino acid identity) proteins, respectively. Although P. aeruginosa was found to have proteins similar to the enteric chemotaxis proteins CheA, CheB, CheW, CheY, and CheZ, the gene encoding a CheR homologue did not reside in the chemotaxis gene cluster. The P. aeruginosa cheR gene could be cloned by phenotypic complementation of the PC4 mutant. This gene was located at least 1,800 kb away from the chemotaxis gene cluster and encoded a putative polypeptide that had 32% amino acid identity with E. coli CheR.

References

  1. Masduki, A., Nakamura, J., Ohga, T., Umezaki, R., Kato, J., and Ohtake, H., Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. J. Bacteriol., 177, 948-952 (1995).

  2. Emori, T. G. and Gaynes, R. P., An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev., 6, 428-442 (1993).

  3. Craven, R. C. and Montie, T., Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J. Bacteriol., 164, 544-549 (1985).

  4. Moench, T. T. and Konetzka, V., Chemotaxis in Pseudomonas aeruginosa. J. Bacteriol., 133, 274-280 (1978).

  5. Moulton, R. C. and Montie, T. C., Chemotaxis by Pseudomonas aeruginosa. J. Bacteriol., 137, 274-280 (1978).

  6. Kuroda, A., Kumano, T., Taguchi, K., Nikata, T., Kato, J., and Ohtake, H., Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa. J. Bacteriol., 177, 7019-7025 (1995).

  7. Taguchi, K., Fukutomi, H., Kuroda, A., Kato, J., and Ohtake, H., Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiol., 143, 3223-3229 (1997).

  8. Ohga, T., Masduki, A., Kato, J., and Ohtake, H., Chemotaxis away from thiocyanic and isothiocyanic esters in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 113, 63-66 (1993).

  9. Starnbach, M. N. and Lory, S., The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol. Microbiol., 6, 459-469 (1992).

  10. Vieira, J. and Messing, J., Production of single-stranded plasmid DNA. Methods Enzymol., 153, 3-11 (1987).

  11. Holloway, B. W., Krishnapillai, V., and Morgan, A. F., Chromosomal genetics of Pseudomonas. Microbiol. Rev., 43, 73-102 (1979).

  12. Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., (1989).

  13. Armstrong, J. B., Adler, J., and Dahl, M. M., Nonchemotactic mutants of Escherichia coli. J. Bacteriol., 93, 390-398 (1973).

  14. Nikata, T., Sumida, K., Kato, J., and Ohtake, H., Rapid method for analyzing bacterial behavioral responses to chemical stimuli. Appl. Environ. Microbiol., 58, 2250-2254 (1992).

  15. Goldberg, J. B. and Ohman, D. E., Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J. Bacteriol., 158, 1115-1121 (1984).

  16. Goldberg, J. B. and Ohman, D. E., Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate. J. Bacteriol., 169, 1593-1602 (1987).

  17. Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA., 74, 5463-5467 (1977).

  18. Pearson, W. R. and Lipman, D. J., Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A., 85, 2444-2448 (1988).

  19. Hein, J. J., A unified approach to alignment and phylogenies. Methods Enzymol., 183, 626-645 (1990).

  20. Southern, E., Detection of specific sequence among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503-517 (1975).

  21. Romling, U., Grotues, D., Bautch, W., and Tummler, B., A physical map of Pseudomonas aeruginosa PAO. Microbiol., 8, 4081-4089 (1989).

  22. West, S. E. H. and Iglewski, B. H., Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res., 16, 9323-9334 (1988).

  23. Shine, J. and Dalgarno, L., The 3′ terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA., 71, 1342-1346 (1974).

  24. Ditty, J. L., Grimm, A. C., and Harwood, C. S., Identification of a chemotaxis gene region from Pseudomonas putida, FEMS Microbiol. Lett., 159, 267-273 (1998).

  25. Kofoid, E. C. and Parkinson, J. S., Tandem translation starts in the cheA locus of Escherichia coli. J. Bacteriol., 173, 2116-2119 (1991).

  26. Greck, M., Platzer, J., Sourjik, V., and Schmitt, R., Analysis of a chemotaxis operon in Rhizobium meliloti. Mol. Microbiol., 15, 989-1000 (1995).

  27. Ward, M. J., Bell, A. W., Hamblin, P. A., Packer, H. L., and Armitage, J. P., Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. Mol. Microbiol., 17, 357-366 (1995).

  28. Parkinson, J. S. and Kofoid, E. C., Communication modules in bacterial signalling proteins. Annu. Rev. Gent., 26, 71-112 (1992).

  29. Mutoh, N., and Simon, M. I., Nucleotide sequence corresponding to five chemotaxis genes in Escherichia coli. J. Bacteriol., 165, 161-166 (1986).

  30. Hamblin, P. A., Grishanin, R. N., and Armitage, J. P., Evidence for two chemosensory pathways in Rhodobacter sphaeroides. Mol. Microbiol., 26, 1083-1096 (1997).

  31. Stewart, R. C. and Dahlquist, F. W., _N_-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. J. Bacteriol., 170, 5728-5738 (1988).

  32. Stock, J. B., Ninfa, A. J., and Stock, A. M., Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev., 53, 450-490 (1989).

  33. Mirel, D. B., Lustre, V. M., and Chamberlin, M. J., An operon of Bacillus subtilis motility genes transcribed by the sigma-D form of RNA polymerase. J. Bacteriol., 174, 4197-4204 (1992).

  34. Ireton, K., Gunther IV, N. W., and Grossman, A. D., spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol., 176, 5320-5329 (1994).

  35. Holloway, B. W., Römling, U., and Tummler, B., Genomic mapping of Pseudomonas aeruginosa PAO. Microbiol., 140, 2907-2929 (1994).

  36. Ordal, G. W., Nettleton, D. O., and Hoch, J. A., Genetics of Bacillus subtilis chemotaxis: Isolation and mapping of mutations of chemotaxis genes. J. Bacteriol., 154, 1088-1097 (1983).

This content is only available as a PDF.

© 1999 by Japan Society for Bioscience, Biotechnology, and Agrochemistry

Citations

Views

Altmetric

Metrics

Total Views 164

0 Pageviews

164 PDF Downloads

Since 1/1/2021

Month: Total Views:
January 2021 2
March 2021 5
April 2021 4
June 2021 2
July 2021 3
August 2021 3
September 2021 3
October 2021 4
November 2021 4
December 2021 1
January 2022 2
February 2022 3
March 2022 2
April 2022 5
May 2022 6
July 2022 4
August 2022 2
September 2022 3
October 2022 10
November 2022 2
December 2022 6
January 2023 1
February 2023 9
March 2023 7
April 2023 4
May 2023 2
June 2023 1
July 2023 5
August 2023 8
September 2023 4
October 2023 6
November 2023 4
December 2023 3
January 2024 5
February 2024 3
March 2024 3
April 2024 3
May 2024 4
June 2024 2
July 2024 7
August 2024 4
September 2024 3

Citations

62 Web of Science

×

Email alerts

Citing articles via

More from Oxford Academic