Effect of long-term Se deficiency on the antioxidant capacities of rat vascular tissue (original) (raw)
References
W. R. MacLellan and M. D. Schneider, Death by design: programmed cell death in cardiovascular biology and disease, Circ. Res.81, 137–144 (1997). PubMedCAS Google Scholar
S. Dimmeler, C. Hermann, and A. M. Zerher, Apoptosis of endothelial cells—contribution to the pathophysiology of atherosclerosis, Eur. Cytokine Network9, 697–698 (1998). CAS Google Scholar
R. C. Mckenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for immune function, Trends Immunol. Today19, 342–345 (1998). ArticleCAS Google Scholar
L. Z. Zhong and A. Holmgren, Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations, J. Biol. Chem.275, 18,121–18,128 (2000). CAS Google Scholar
M. J. Prieto-Alamo, J. Jurado, G. M. Rafaela, et al., Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress, J. Biol. Chem.275, 13,398–13,405 (2000). ArticleCAS Google Scholar
M. M. Berggren, J. F. Mangin, J. R. Gasdaska, et al., Effect of selenium on rat thioredoxin reductase activity, Biochem. Pharmacol.57, 187–193 (1999). ArticlePubMedCAS Google Scholar
K. E. Hill, G. W. McCollum, M. E. Boeglin, et al., Thioredoxin reductase activity is decreased by selenium deficiency, Biochem. Biophys. Res. Commun.234, 293–295 (1997). ArticlePubMedCAS Google Scholar
X. H. Qu, K. X. Huang, L. Q. Deng, et al., Selenium deficiency-induced alterations in the vascular system of the rat, Biol. Trace Element Res.75, 119–138 (2000). ArticleCAS Google Scholar
J. P. Thomas, P. G. Geiger, and A. W. Girotti, Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidase in cytoprotection against lipid hydroperoxide- and iron-mediated reactions, J. Lipid Res.34, 479–490 (1993). PubMedCAS Google Scholar
J. K. Huttunen, Selenium and cardiovascular disease—an update, Biomed. Environ. Stud.10, 116–124 (1997). Google Scholar
M. R. Fernando, H. Nanri, S. Yoshitake, et al., Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem.209, 917–922 (1992). ArticlePubMedCAS Google Scholar
X. H. Qu, K. X. Huang, Z. X. Wu, et al., Purification of the newly found selenium-containing proteins in the arterial wall and brain of the rat, Biochem. Biophys. Res. Commun.270, 688–694 (2000). ArticlePubMedCAS Google Scholar
K. X. Huang, H. M. Liu, Z. X. Chen, et al., Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats, Atherosclerosis162, 137–144 (2002). ArticlePubMedCAS Google Scholar
J. H. Wathingson, Fluorometric determination of selenium in biological material with 2,3-diaminoaphthalene, Anal. Chem.38(1), 92–96 (1966). Article Google Scholar
D. G. Hofeman, R. A. Sunde, and W. G. Hoekstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr.104, 580–587 (1974). Google Scholar
D. R. Spitz and L. W. Oberley, An assay for superoxide dismutase activity in mammalian tissue homogenates, Anal. Biochem.179, 8–18 (1989). ArticlePubMedCAS Google Scholar
O. Hiroshi, O. Nobuko, and Y. Kunio, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem.95, 351–358 (1979). Article Google Scholar
N. J. Miller, C. Rice-Evans, M. J. Davies, et al., A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci.84, 407–412 (1993). PubMedCAS Google Scholar
A. Holmgren, Bovine thioredoxin system: purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction, J. Biol. Chem.252, 4600–4606 (1977). PubMedCAS Google Scholar
J. E. Oblong, P. Y. Gasdaska, K. Sherrill, et al., Purification of human thioredoxin reductase: properties and characterization by absorption and circular dichroism spectroscopy, Biochemistry32, 7271–7277 (1993). ArticlePubMedCAS Google Scholar
O. H. Lowery, N. J. Roscbrough, A. L. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem.193, 265–275 (1951). Google Scholar
H. W. Lane and D. Medina, Selenium concentration and glutathione peroxidase activity in normal and neoplastic development of the mouse mammary gland, Cancer Res.43, 1558–1561 (1983). PubMedCAS Google Scholar
X. G. Lei, J. K. Evenson, K. M. Thompson, et al., Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium, J. Nutr.125, 1438–1446 (1995). PubMedCAS Google Scholar
M. S. Saedi, C. G. Smith, J. Frampton, et al., Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver, Biochem. Biophys. Res. Commun.153, 855–861 (1988). ArticlePubMedCAS Google Scholar
G. Bermano, F. Nicol, J. A. Dyer, et al., Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats, Biochem. J.311, 425–430 (1995). PubMedCAS Google Scholar
M. J. Christensen, P. M. Cammack, and C. D. Wray, Tissue specficity of selenoprotein gene expression in rats, J. Nutr. Biochem.6, 367–372 (1995). ArticlePubMedCAS Google Scholar
J. J. Anderson, M. D. Gerhard, I. T. Meredith, et al., Systemic nature of endothelial dysfunction in atherosclerosis, Am. J. Cardiol.75, 71B-74B (1995). ArticlePubMedCAS Google Scholar
D. Vitoux, P. Chappuis, J. Arnaud, et al., Selenium, glutathione peroxidase, peroxides and platelet functions, Ann. Biol. Clin.54, 181–187 (1996). CAS Google Scholar
Y. Z. Cao, C. C. Reddy, and L. M. Sordillo, Altered eicosanoid biosynthesis in selenium-deficient endothelial cells, Free Radical Biol. Med.28, 381–389 (2000). ArticleCAS Google Scholar
H. E. Ganther, Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase, Carcinogenesis20, 1657–1666 (1999). ArticlePubMedCAS Google Scholar
X. R. Ma, J. B. Hu, D. J. Lindner, et al., Mutational analysis of human thioredoxin reductase 1, J. Biol. Chem.277, 22,460–22,468 (2002). CAS Google Scholar
L. Zhong, E. S. J. Arner, J. Ljung, et al., Rat and calf thioredoxin reducase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue, J. Biol. Chem.273, 8581–8591 (1998). ArticlePubMedCAS Google Scholar
S. N. Gorlatov and T. C. Stadtman, Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin, Proc. Natl. Acad. Sci. USA95, 8520–8525 (1998). ArticlePubMedCAS Google Scholar
Q. A. Sun, Y. Wu, F. Zappacosta, et al., Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductase, J. Biol. Chem.274, 24,522–24,530 (1999). CAS Google Scholar
K. Becker, S. Gromer, R. H. Schirmer, et al., Thioredoxin reductase as a pathophysiological factor and drug target, Eur. J. Biochem.267, 6118–6125 (2000). ArticlePubMedCAS Google Scholar
O. C. Harel, R. Stearman, A. P. Gasch, et al., Role of thioredoxin reductase in the Yaplpdependent response to oxidative stress in Sacharomyces cerevisiae, Mol. Microbiol.39, 595–605 (2001). Article Google Scholar
M. R. Fernando, H. Nanri, S. Yoshitake, et al., Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem.209, 917–922 (1992). ArticlePubMedCAS Google Scholar
G. E. Arteel and H. Sies, The biochemistry of selenium and the glutathione system, Environ. Toxicol. Pharmacol.10, 153–158 (2001). ArticleCAS Google Scholar
W. Fujiwara, T. Fujii, J. Fujii, et al., Functional expression of rat thioredoxin reductase: selenocysteine insertion sequence element is essential for the active enzyme, Biochem. J.340, 439–444 (1999). ArticlePubMedCAS Google Scholar