Effect of long-term Se deficiency on the antioxidant capacities of rat vascular tissue (original) (raw)

References

  1. W. R. MacLellan and M. D. Schneider, Death by design: programmed cell death in cardiovascular biology and disease, Circ. Res. 81, 137–144 (1997).
    PubMed CAS Google Scholar
  2. S. Dimmeler, C. Hermann, and A. M. Zerher, Apoptosis of endothelial cells—contribution to the pathophysiology of atherosclerosis, Eur. Cytokine Network 9, 697–698 (1998).
    CAS Google Scholar
  3. M. P. Rayman, The importance of selenium to human health, Lancet 356, 233–241 (2000).
    Article PubMed CAS Google Scholar
  4. R. C. Mckenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for immune function, Trends Immunol. Today 19, 342–345 (1998).
    Article CAS Google Scholar
  5. L. Z. Zhong and A. Holmgren, Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations, J. Biol. Chem. 275, 18,121–18,128 (2000).
    CAS Google Scholar
  6. M. J. Prieto-Alamo, J. Jurado, G. M. Rafaela, et al., Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress, J. Biol. Chem. 275, 13,398–13,405 (2000).
    Article CAS Google Scholar
  7. M. M. Berggren, J. F. Mangin, J. R. Gasdaska, et al., Effect of selenium on rat thioredoxin reductase activity, Biochem. Pharmacol. 57, 187–193 (1999).
    Article PubMed CAS Google Scholar
  8. K. E. Hill, G. W. McCollum, M. E. Boeglin, et al., Thioredoxin reductase activity is decreased by selenium deficiency, Biochem. Biophys. Res. Commun. 234, 293–295 (1997).
    Article PubMed CAS Google Scholar
  9. X. H. Qu, K. X. Huang, L. Q. Deng, et al., Selenium deficiency-induced alterations in the vascular system of the rat, Biol. Trace Element Res. 75, 119–138 (2000).
    Article CAS Google Scholar
  10. J. P. Thomas, P. G. Geiger, and A. W. Girotti, Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selenoperoxidase in cytoprotection against lipid hydroperoxide- and iron-mediated reactions, J. Lipid Res. 34, 479–490 (1993).
    PubMed CAS Google Scholar
  11. J. K. Huttunen, Selenium and cardiovascular disease—an update, Biomed. Environ. Stud. 10, 116–124 (1997).
    Google Scholar
  12. M. R. Fernando, H. Nanri, S. Yoshitake, et al., Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem. 209, 917–922 (1992).
    Article PubMed CAS Google Scholar
  13. X. H. Qu, K. X. Huang, Z. X. Wu, et al., Purification of the newly found selenium-containing proteins in the arterial wall and brain of the rat, Biochem. Biophys. Res. Commun. 270, 688–694 (2000).
    Article PubMed CAS Google Scholar
  14. K. X. Huang, H. M. Liu, Z. X. Chen, et al., Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats, Atherosclerosis 162, 137–144 (2002).
    Article PubMed CAS Google Scholar
  15. J. H. Wathingson, Fluorometric determination of selenium in biological material with 2,3-diaminoaphthalene, Anal. Chem. 38(1), 92–96 (1966).
    Article Google Scholar
  16. D. G. Hofeman, R. A. Sunde, and W. G. Hoekstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104, 580–587 (1974).
    Google Scholar
  17. D. R. Spitz and L. W. Oberley, An assay for superoxide dismutase activity in mammalian tissue homogenates, Anal. Biochem. 179, 8–18 (1989).
    Article PubMed CAS Google Scholar
  18. O. Hiroshi, O. Nobuko, and Y. Kunio, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).
    Article Google Scholar
  19. N. J. Miller, C. Rice-Evans, M. J. Davies, et al., A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci. 84, 407–412 (1993).
    PubMed CAS Google Scholar
  20. A. Holmgren, Bovine thioredoxin system: purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction, J. Biol. Chem. 252, 4600–4606 (1977).
    PubMed CAS Google Scholar
  21. J. E. Oblong, P. Y. Gasdaska, K. Sherrill, et al., Purification of human thioredoxin reductase: properties and characterization by absorption and circular dichroism spectroscopy, Biochemistry 32, 7271–7277 (1993).
    Article PubMed CAS Google Scholar
  22. O. H. Lowery, N. J. Roscbrough, A. L. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).
    Google Scholar
  23. H. W. Lane and D. Medina, Selenium concentration and glutathione peroxidase activity in normal and neoplastic development of the mouse mammary gland, Cancer Res. 43, 1558–1561 (1983).
    PubMed CAS Google Scholar
  24. R. F. Burk and K. E. Hill, Regulation of selenoproteins, Annu. Rev. Nutr. 13, 65–81 (1993).
    Article PubMed CAS Google Scholar
  25. X. G. Lei, J. K. Evenson, K. M. Thompson, et al., Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium, J. Nutr. 125, 1438–1446 (1995).
    PubMed CAS Google Scholar
  26. M. S. Saedi, C. G. Smith, J. Frampton, et al., Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver, Biochem. Biophys. Res. Commun. 153, 855–861 (1988).
    Article PubMed CAS Google Scholar
  27. G. Bermano, F. Nicol, J. A. Dyer, et al., Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats, Biochem. J. 311, 425–430 (1995).
    PubMed CAS Google Scholar
  28. M. J. Christensen, P. M. Cammack, and C. D. Wray, Tissue specficity of selenoprotein gene expression in rats, J. Nutr. Biochem. 6, 367–372 (1995).
    Article PubMed CAS Google Scholar
  29. J. J. Anderson, M. D. Gerhard, I. T. Meredith, et al., Systemic nature of endothelial dysfunction in atherosclerosis, Am. J. Cardiol. 75, 71B-74B (1995).
    Article PubMed CAS Google Scholar
  30. D. Vitoux, P. Chappuis, J. Arnaud, et al., Selenium, glutathione peroxidase, peroxides and platelet functions, Ann. Biol. Clin. 54, 181–187 (1996).
    CAS Google Scholar
  31. Y. Z. Cao, C. C. Reddy, and L. M. Sordillo, Altered eicosanoid biosynthesis in selenium-deficient endothelial cells, Free Radical Biol. Med. 28, 381–389 (2000).
    Article CAS Google Scholar
  32. H. E. Ganther, Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase, Carcinogenesis 20, 1657–1666 (1999).
    Article PubMed CAS Google Scholar
  33. X. R. Ma, J. B. Hu, D. J. Lindner, et al., Mutational analysis of human thioredoxin reductase 1, J. Biol. Chem. 277, 22,460–22,468 (2002).
    CAS Google Scholar
  34. L. Zhong, E. S. J. Arner, J. Ljung, et al., Rat and calf thioredoxin reducase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue, J. Biol. Chem. 273, 8581–8591 (1998).
    Article PubMed CAS Google Scholar
  35. S. N. Gorlatov and T. C. Stadtman, Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin, Proc. Natl. Acad. Sci. USA 95, 8520–8525 (1998).
    Article PubMed CAS Google Scholar
  36. Q. A. Sun, Y. Wu, F. Zappacosta, et al., Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductase, J. Biol. Chem. 274, 24,522–24,530 (1999).
    CAS Google Scholar
  37. K. Becker, S. Gromer, R. H. Schirmer, et al., Thioredoxin reductase as a pathophysiological factor and drug target, Eur. J. Biochem. 267, 6118–6125 (2000).
    Article PubMed CAS Google Scholar
  38. O. C. Harel, R. Stearman, A. P. Gasch, et al., Role of thioredoxin reductase in the Yaplpdependent response to oxidative stress in Sacharomyces cerevisiae, Mol. Microbiol. 39, 595–605 (2001).
    Article Google Scholar
  39. M. R. Fernando, H. Nanri, S. Yoshitake, et al., Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells, Eur. J. Biochem. 209, 917–922 (1992).
    Article PubMed CAS Google Scholar
  40. G. E. Arteel and H. Sies, The biochemistry of selenium and the glutathione system, Environ. Toxicol. Pharmacol. 10, 153–158 (2001).
    Article CAS Google Scholar
  41. W. Fujiwara, T. Fujii, J. Fujii, et al., Functional expression of rat thioredoxin reductase: selenocysteine insertion sequence element is essential for the active enzyme, Biochem. J. 340, 439–444 (1999).
    Article PubMed CAS Google Scholar

Download references