CD40: CD40L interactions in X-linked and non-X-linked hyper-IgM syndromes (original) (raw)
Notarangelo LD, Duse M, Ugazio AG: Immunodeficiency with hyper-IgM (HIM). Immunodef Rev 1992;3:101–22. PubMedCAS Google Scholar
Callard RE, Armitage RJ, Fanslow WC, Spriggs MK: CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunology Today 1993;14:559–64. PubMedCAS Google Scholar
Levy J, Espanol-Boren T, Thomas C, et al.: Clinical spectrum of X-linked hyper-IgM syndrome (see comments). J Pediatr 1997; 131:47–54. PubMedCAS Google Scholar
Aruffo A, Farrington M, Hollenbaugh D, et al.: The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked immunodeficiency with hyper-IgM. Cell 1993;72:291–300. PubMedCAS Google Scholar
Korthauer U, Graf D, Mages HW, et al.: Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 1993;361:539–541. PubMedCAS Google Scholar
DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de SaintBasile G: CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 1993;361:539–541. Google Scholar
Allen RC, Amitage RJ, Conley ME, et al.: CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 1993;259:990–993. PubMedCAS Google Scholar
Fuleihan R, Ramesh N, Loh R, et al.: Defective expression of the CD40 ligand in X-chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci USA 1993;90: 2170–2173. PubMedCAS Google Scholar
Durandy A, Schiff C, Bonnefoy JY, et al.: Induction by anti-CD40 antibody or soluble CD40 ligand and cytokines of IgG, IgA, and IgE production by B cells from patients with X-linked hyper IgM syndrome. Eur J Immunol 1993;23:2294–2299. PubMedCAS Google Scholar
Ameratunga R, Lederman HM, Sullivan KE, et al.: Defective antigen-induced lymphocyte proliferation in the X-linked hyper-IgM syndrome. J Pediatr 1997;131: 147–150. PubMedCAS Google Scholar
Armitage RJ, Fanslow WC, Strockbine L, et al.: Molecularand biological characterization of a murine ligand for CD40. Nature 1992;357:80–82. PubMedCAS Google Scholar
Hollenbaugh D, Grosmaire LS, Kullas CD, et al.: The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J 1992;11:4313–4321. PubMedCAS Google Scholar
Ledeman S, Yellin MJ, Inghirami G, Lee JJ, Knowles DM, Chess L: Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. J Immunol 1992;149:3817–3826. Google Scholar
Roy M, Waldschmidt T, Aruffo A, Ledbetter JA, Noelle RJ: The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol 1993;151:2497–2510. PubMedCAS Google Scholar
Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L: Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (Help). J Exp Med 1992;175:1092–1101. Google Scholar
Lane P, Traunecker A, Inui S, Lanzavecchia A, Gray D: Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol 1992;22:2573–2578. PubMedCAS Google Scholar
Lane P, Brocker T, Hubele S, Padovan E, Lanzavecchia A, McConnell F: Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation. J Exp Med 1993;177: 1209–1213. PubMedCAS Google Scholar
Van den Eertwegh AJ, Noelle RJ, Roy M, et al.: In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions. J Exp Med 1993;178:1555–1565. PubMed Google Scholar
Banchereau J, Bazan F, Blanchard D, et al.: The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12:881–922. PubMedCAS Google Scholar
Clark LB, Foy TM, Noelle RJ: CD40 and its ligand. Adv Immunol 1996;63:43–78. PubMedCAS Google Scholar
Armitage RJ, Maliszewski CR, Alderson MR, Grabstein KH, Spriggs MK, Fanslow WC: CD40L: a multi-functional ligand. Sem Immunol 1993;5:401–412. CAS Google Scholar
Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK: CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 1993;180:669–674. Google Scholar
Kiener PA, Moran-Davis P, Rankin BM, Wahl AF, Aruffo A, Hollenbaugh D: Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in humanmonocytes. J Immunol 1995; 155:4917–4925. PubMedCAS Google Scholar
Shu U, Kiniwa M, Wu CY, et al.: Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 1995; 25:1125–1128. PubMedCAS Google Scholar
Wiley JA, Harmsen AG: CD40 ligand is required for resolution of Pneumocystis carinii pneumonia in mice. J Immunol 1995;155: 3525–3529. PubMedCAS Google Scholar
Stout RD, Suttles J, Xu J, Grewal IS, Flavell RA: Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice. J Immunol 1996;156:8–11. PubMedCAS Google Scholar
Noelle RJ: CD40 and its ligand in host defense. Immunity 1996;4: 415–419. PubMedCAS Google Scholar
Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ: gp39-CD40 interactions are essential for Germinal center formation and the development of B cell memory. J Exp Med 1994;180: 157–163. PubMedCAS Google Scholar
Gray D, Dullforce P, Jainandunsing S: Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction. J Exp Med 1994;180:141–155. PubMedCAS Google Scholar
Xu J, Foy TM, Laman JD, et al.: Micedeficient for the CD40 Ligand. Immunity 1994;1:423–431. PubMedCAS Google Scholar
Renshaw BR, Fanslow WC 3rd, Armitage RJ, et al.: Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994; 180:1889–1900. PubMedCAS Google Scholar
Kawabe T, Naka T, Yishida K, et al.: The immune response in CD40-deficient mice: impaired immuno-globulin class switching and germinal center formation. Immunity 1994;1:167–178. PubMedCAS Google Scholar
Castigli E, Alt FW, Davidson L, et al.: CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci USA 1994;91:12,135–12,139. CAS Google Scholar
Uckun FM, Schieven GL, Dibirdik I, Chandan LM, Tuel AL, Ledbetter JA: Stimulation of protein tyrosine phosphorylation, phosphoinositide turnover, and multiple previously unidentified serine/threosine-specific protein kinases by the Pan-B cell receptor CD40/Bp50 at discrete developmental stages of human B-cell ontogeny. J Biol Chem 1991;266: 17,478–17,485. CAS Google Scholar
Ren CL, Morio T, Fu SF, Geha RS: Signal transduction via CD40 involves activation of lynkinase and phosphatidy linositol-3-kinase, and phosphorylation of phospholipase Cγ 2. J Exp Med 1994;179: 673–680. PubMedCAS Google Scholar
Aagaard-Tillery KM, Jelinek DF: Phosphatidylinositol 3-kinase activation in normal human B lymphocytes. J Immunol 1996; 156:4543–4554. PubMedCAS Google Scholar
Padmore L, An S, Gunby RH, Kelly K, Radda GK, Knox KA: CD40-triggered protein tyrosine phosphorylation on Vav and on phosphatidy linositol 3-kinase correlates with survival of the Ramos-Burkitt lymphoma B cell line. Cell Immunol 1997;177:119–128. PubMedCAS Google Scholar
Hanissian SH, Geha RS: Jak3 is associated with CD40 and is critical with CD40 and iscritical for CD40 induction of gene expression in B cells. Immunity 1997;6:379–387. PubMedCAS Google Scholar
Inoue J, Ishida T, Tsukamoto N, et al.: Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 2000;254:14–24. PubMedCAS Google Scholar
Rothe M, Wong SC, Henzel WJ, Goeddel DV: A novel family of putative signal transducters associated with the cytoplasmic domain of the 75kDa tumornecrosis factor receptor. Cell 1994;78: 681–692. PubMedCAS Google Scholar
Rothe M, Sarma V, Dixit VM, Goeddel DV: TRAF2-mediated activation of NF-κB by TNFreceptor 2 and CD40. Science 1995; 269:1424–1427. PubMedCAS Google Scholar
Ishida TK, Tojo T, Aoki T, et al.: TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediatesCD40 signaling. Proc Natl Acad Sci USA 1996;93:9437–9442. PubMedCAS Google Scholar
Cheng G, Cleary AM, Ye Z, Hong DI, Lederman S, Baltimore D: Involvement of CRAFI, a relative of TRAF, in CD40 signaling. Science 1995;267:1494–1498. PubMedCAS Google Scholar
Hu HM, O’Rourke, K, Boguski, MS, Dixit, VM: A novel RING finger proteininteracts with the cytoplasmic domain of CD40. J Biol Chem 1994;269:30,069–30,072. CAS Google Scholar
Sato T, Irie S, Reed JC: A novel member of the TRAF family of putative signal transducting proteins binds to the cytosolic domain of CD40. FEBS Lett 1995;358: 113–118. PubMedCAS Google Scholar
Francis DA, Darras JG, Ke X, Sen R, Rothstein TL: Induction of the transcription factors NF-kappaB, AP-1 and NF-AT during B cell stimulation through the CD40 receptor. Int Immunol 1995;7:151–161. PubMedCAS Google Scholar
Snapper CM, Zelazowski P, Rosas FR, et al.: B cells from p50/NF-κB knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J Immunol 1996;156:183–191. PubMedCAS Google Scholar
Seyama K, Nonoyama S, Gangsaas I, et al.: Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood 1998;92:2421–2434. PubMedCAS Google Scholar
Notarangelo LD, Peitsch MC: CD40L base: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today 1996;17:511–516. PubMedCAS Google Scholar
Zonana, J, Elder, ME, Schneider, LC, Orlow, SJ, Moss, C, Golabi, M, Shapira, SK, Farndon, PA, Wara, DW, Emmal, SA, Ferguson, BM: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000;67:1555–1562. PubMedCAS Google Scholar
Doffinger, R, Smahi, A, Bessia, C, Geissmann, F, Feinberg, J, Durandy, A, Bodemer, C, Kenwrick, S, Dupuis-Girod, S, Blanche, S, Wood, P, Rabia, SH, Headon, DJ, Overbeek, PA, LeDeist, F, Holland, SM, Belani, K, Kumararatne, DS, Fischer, A, Shapiro, R, et al.: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by imaired NF-kappaB signaling. Nat Genet 2001;27: 277–285. PubMedCAS Google Scholar
Jain, A, Ma, CA, Kiu, S, Brown, M, Cohen, J, Strober W: Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodennal dysplasia. Nat Immunol 2001;2:223–228. PubMedCAS Google Scholar
Yamaoka, S, Courtois, G, Bessia, C, Whiteside, T, Weil, R, Agou, F, Kirk HE, Kay RJ, Israel A: Complementation cloning of NEMO, a component of the Ikap-paB kinase complex essential for NF-kappaB activiation. Cell 1998; 93:1231–1240. PubMedCAS Google Scholar
Baldwin, AS, Jr.: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–683. PubMedCAS Google Scholar
Facchetti F, Appiani C, Salvi L, Levy J, Noptarangelo LD: Immuno-histologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with hyper-IgM. Abortive germinal center cell reactionand severe depletion of follicular dendritic cells. J Immunol 1995;154:6624–6633. PubMedCAS Google Scholar
Soong L, Xu JC, Grewal IS, et al.: Disruption of CD40-CD40 ligand interactions results inanenhanced susceptibility to Leishmania amazonensis infection. Immunity 1996; 4:263–273. PubMedCAS Google Scholar
Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG, Maliszewski CR: CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 1996;4:283–289. PubMedCAS Google Scholar
Grewal IS, Xu J, Flavell RA: Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995;378: 617–620. PubMedCAS Google Scholar
Jamieson WM, Kerr MR: A family with several cases of hypogammaglobulinemia. Arch Dis Child 1962;37:330. PubMedCAS Google Scholar
Krantman HJK, Stiehm ER, Stevens RH, Saxon A, Seeger RC: Abnormal B cell differentiation and variable increased T cell suppression in immunodeficiency with hyper-IgM. Clin Exp Immunol 1980;40:147. PubMedCAS Google Scholar
Espanol T, Guarro A, Barquinero J, Gareia-Arumi RM: Familial incidence of hyper IgM syndrome. In: Griscelli C, Vosen J, eds. Progress in Immuno efficiency Research and Therapy 1. Amsterdam: Elsevier, 1984:211. Google Scholar
Beall GN, Ashman RF, Miller ME, et al.: Hypogammaglobulinemia in mother and son. J Allergy Clin Immunol 1980;65:471. PubMedCAS Google Scholar
Brahmi Z, Lazarus KH, Hodes ME, Baehner RL: Immunologic studies of three family members with the immunodeficiency with hyper-IgM syndrome. J Clin Immunol 1983;3:137. Google Scholar
Bhushan A, Barnhart B, Shone S, Song C, Covey LR: A transcriptional defect underlies B lymphocyte dysfunction in a patient diagnosed with non-X-linked hyper-IgM syndrome. J Immunol 2000;164:2871–2880. PubMedCAS Google Scholar
Kikutani H, Inui S, Sato R, et al.: Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell 1986;47: 657–665. PubMedCAS Google Scholar
Defrance T, Aubry JP, Rousset F, et al.: Human recombinant interleukin 4 induces Fc epsilon receptors (CD23) on normal human B lymphocytes. J Exp Med 1987; 165:1459–1467. PubMedCAS Google Scholar
Ranheim EA, Kipps TJ: Activated T cells induce expression of B7/BB1 on normal or leukemic B cells througha CD40-dependent signal. J Exp Med 1993;177: 925–935. PubMedCAS Google Scholar
Choi T, Bigger WD, Good R: Biosynthesis and secretion of immunoglobulins by peripheral-blood lymphocytes inseverehypogammaglobulinemia. Lancet 1972; 1:1149. PubMedCAS Google Scholar
Wu LY, Lawton AR, Cooper MD: Differentiation capacity of cultures of B lymphocytes from immunod-eficient patients. J Clin Invest 1973;52:3180–3189. PubMedCAS Google Scholar
Cunningham-Rundles C: Clinical and immunological analyses of 103 patients with common variable immunodeficiency. J Clin Immunol 1989;9:22–33. PubMedCAS Google Scholar
Cunningham-Rundles C, Bodian C: Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999;92:34–48. PubMedCAS Google Scholar
Mayer L, Fu SM, Cunningham-Rundles C, Kunkel HG: Polyclonal immunoglobulin secretion in patients with common variable immunodeficiency using monoclonal B cell differentiation factors. J Clin Invest 1984;74: 2115–2120. PubMedCAS Google Scholar
Nonoyama S, Farringon M, Ishida H, Howard M, Ochs HD: Activated B cells from patients with common variable immuno deficiency proliferate and synthesize immunoglobulin. J Clin Invest 1993;92: 1282–1287. PubMedCAS Google Scholar
Eisenstein EM, Chua K, Strober W: B cell differentiation defects in common variable immunodeficiency are ameliorated after stimulation with anti-CD40 antibody and IL-10. J Immunol 1994;152: 5957–5968. PubMedCAS Google Scholar
Life P, Gauchat JF, Schnuriger V, et al.: T cell clones from an X-linked hyper-immunoglobulin (IgM) patient induce IgE synthesis in vitro despite expression of nonfunctional CD40 ligand. J Exp Med 1994;180:1775–1784. PubMedCAS Google Scholar
Callard RE, Smith SH, Herbert J, et al.: CD40 ligand (CD40L) expression and B cell function in agammaglobulinemia with normal or elevated levels of IgM (HIM). J Immunol 1994;153:3295–3306. PubMedCAS Google Scholar
Conley ME, Larche M, Bonagura VR, et al.: Hyper IgM syndrome associated with defective CD40 mediated B cell activation. J Clin Invest 1994;94:1404–1409. PubMedCAS Google Scholar
Revy P, Geissmann F, Debre M, Fischer A, Durandy A: Normal CD40-mediated activation of monocytesand dendritic cells from patients with hyper-IgM syndrome due to a CD40 pathway defect in B cells. Eur J Immunol 1998;28: 3648–3654. PubMedCAS Google Scholar
Kamanaka M, Yu P, Yasui T, et al.: Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 1996;4: 275–281. PubMedCAS Google Scholar
Revy P, Muto T, Levy Y, et al.: Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000;102:565–575. PubMedCAS Google Scholar
Muramatsu M, Sankaranand VS, Anant S, et al.: Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999;274: 18,470–18,476. CAS Google Scholar
Navaratnam N, Morrison JR, Bhattacharya S, et al.: The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 1993;268:20,709–20,712. CAS Google Scholar
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T: Class switch recombination and hypermutation requireactivation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102:553–563. PubMedCAS Google Scholar
Minegishi Y, Lavoie A, Cunningham-Rundles C, et al.: Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 2000;97:203–210. PubMedCAS Google Scholar
Hennessy K, Fennsewald S, Hummel M, Cole T, Kieff E: A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proc Natl Acad Sci USA 1984;81; 7207–7211. PubMedCAS Google Scholar
Fennewald S, van Santen V, Kieff E: Nucleotide sequence of an mRNA transcribed in latent growth-transfonning virus infection indicates that it may encode a membrane protein. J Virol 1984; 51:411–419. PubMedCAS Google Scholar
Mosialos G, Birkenbach M, Yalmanchili R, VanArsdale T, Ware C, Kieff E: The Epstein-Barr virus transforming protein LMPI engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995;80:389–399. PubMedCAS Google Scholar
Cahir-McFarland ED, Izumi KM, Mosialos G: Epstein-Barr virus transfrormation: involvement of latent membrane protein 1-mediated activation of NF-κB. Oncogene 1999;18:6959–6964. PubMedCAS Google Scholar
Geha RS, Hyslop N, Alami S, Farah F, Schneeberger EE, Rosen FS: Hyper immunoglobulin M immunodeficiency. (Dysgammaglobulinemia). Presence of immunoglobulin M-secretingplas macytoid cells in peripheral blood and failure of immunoglobulin M-immunoglobulin G switch in B-cell differentiation. J Clin Invest 1979;64:385–391. PubMedCAS Google Scholar
Schwaber JF, Lazarus H, Rosen FS: IgM-restricted production of immunoglobulin by lymphoid cell lines from patients with immunodeficiency with hyper IgM (dysgammaglo-bulimemia). Clin Immunol Immunopathol 1981;19: 91–97. PubMedCAS Google Scholar
Levitt D, Haber P, Rich K, Cooper MD: Hyper IgM immunodeficiency. A primary dysfunction of B lymphocyte isotype switching. J Clin Invest 1983;72:1650–1657. PubMedCAS Google Scholar
Mayer L, Kwan SP, Thompson C, et al.: Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperim-munoglobulinemia M. N Engl J Med 1986;314:409–413. PubMedCAS Google Scholar
Mayer L, Posnett DN, Kunkel HG: Human malignant T cells capable of inducing an immunoglobulin class switch. J Exp Med 1985; 161:134–144. PubMedCAS Google Scholar
Hendriks RW, Kraakman ME, Craig IW, Espanol T, Schuurman RK: Evidence that in X-linked immunodeficiency with hyperimmunoglobulinemia M the intrinsic immunoglobul in heavy chain class switch mechanism is intact. Eur J Immunol 1990;20:2603–2608. PubMedCAS Google Scholar
Durandy A, Hivrox C, Mazerolles F, et al.: Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J Immunol 1997;158:2576–2584. PubMedCAS Google Scholar
Stavnezer-Nordgren J, Sirlin S: Specificity of immunoglobulin heavy chainswitch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 1986;5:95–102. PubMedCAS Google Scholar
Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW: Mitogen and IL-4 regulated expression of germline Igγ2b transcripts: evidence for directed heavy chain class switching. Cell 1988;53:177–184. PubMedCAS Google Scholar
Gaff C, Gerondakis S: RNA splicing generates alternate forms of germline immunoglobulin alpha heavy chain transcripts. Int Immunol 1990;2:1143–1148. PubMedCAS Google Scholar
Gerondakis S: Structure and expression of murine germ-line immunoglobulin epsilon heavy chain transcripts induced by interleukin 4. Proc Natl Acad Sci USA 1990;87:1581–1585. PubMedCAS Google Scholar
Lebman DA, Nomura DY, Coffman RL, Lee FD: Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type beta-induced isotype switching. Proc Natl Acad Sci USA 1990;87:3962–2966. PubMedCAS Google Scholar
Radcliffe G, Lin YC, Julius M, Marcu KB, Stavnezer J: Structure of germ line immunoglobulin alpha heavy-chain RNA and its location on polysomes. Mol Cell Biol 1990; 10:382–386. PubMedCAS Google Scholar
Rothman P, Chen YY, Lutzker S, et al.: Structure and expression of germline immunoglobuin heavy-chain epsilon transcripts: interleukin-4 plus lipopolysaccharide-directed switching to C epsilon. Mol Cell Biol 1990; 10:1672–1679. PubMedCAS Google Scholar
Rothman P, Lutzker S, Gorham B, Stewart V, Coffman R, Alt FW: Structure and expression of germline immunoglobulin γ3 heavy chain gene transcipts: implications for mitogen and lymphokine directed class switching. Int Immunol 1990;2:621–627. PubMedCAS Google Scholar
Zhang J, Bottaro A, Li S, Stewart V, Alt FW: A selective defect in IEgG2b switching as a result of targeted mutation of the Iγ 2b promoter and exon. EMBO J 1993;12:3529–3537. PubMedCAS Google Scholar
Bottaro A, Lansford R, Xu I, Zhang J, Rothman P, Alt FW: S region transcription _per se_promotes basal IgEclass switch recombination but additional factors regulate thee fficiency of the process. EMBO J 1994;13:665. PubMedCAS Google Scholar
Lorenz M, Jung S, Radbruch A: Switch transcriptsin immunoglobulin class switching. Science 1995; 267:1825–1828. PubMedCAS Google Scholar
Hein K, Lorenz MG, Siebenkotten G, Petry K, Christine R, Radbruch A: Processing of switch transcripts is required for targeting of antibody class switch recombination. J Exp Med 1998;188:2369–2374. PubMedCAS Google Scholar
Coffman RL, Savelkoul HFJ, Lebman DA: Cytokine regulation of immunoglobulin isotypes witching and expression. Sem Immunol 1989;1:55–63. CAS Google Scholar
Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ: Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14:591–617. PubMedCAS Google Scholar
Stavnezer J: Immunoglobulin class switching. Curr Opin Immunol 1996;8:199–205. PubMedCAS Google Scholar
Snapper CM, Marcu KB, Zelazowdski P: The immunoglobulin class switch: Beyond “accessibility”. Immunity 1997;6:217–223. PubMedCAS Google Scholar
Jumper MD, Splawski JB, Lipsky PE, Meek K: Ligation of CD40 induces sterile transcripts of multiple IgH chain isotypes in human B cells. J Immunol 1994;152: 438–445. PubMedCAS Google Scholar
Fujeda S, Zhang K, Saxon A: IL-4 plus CD40 monoclonal antibody induces human B cells γ subclass-specific isotype switch: Switching to γ1-γ3, and γ4, but not γ2. J Immunol 1995;155 2318–2328. Google Scholar
Cerutti A, Trentin L, Zambello R, et al.: The CD4/CD72 receptor system is coexpressed with several functionally relevant counterstructures on human B cells and delivers a critical signaling activity. J Immunol 1996;157:1854–1862. PubMedCAS Google Scholar
Cerutti A, Zan H, Schaffer A, et al.: CD40 ligand and appropriate cytokinesinduce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+IgD+B cell line. J Immunol 1998;160: 2145–2157. PubMedCAS Google Scholar
Padavachee M, Feighery C, Finn A, t al.: Mapping of the X-linked from of hyper IgM syndrome (HIGMI) to Xq26 by close linkage to HPRT. Genomics 1992;14:551. Google Scholar
Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T: Isolation, tissue distribution, and chromosomallocalization of the human activation-induced cytidine deaminase (AID) gene. Genomics 2000; 68:85–88. PubMedCAS Google Scholar
Jin, DY, Jeang, KT: Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28. J Biomed Sci 1999;6: 115–120. PubMedCAS Google Scholar