The GTPase Cycle How Dominant Inhibitory Mutants Block the Biological Functions of Small GTPases (original) (raw)

References

  1. Lowy, D. R. and Willumsen, B. M. (1993) Function and regulation of ras. Annu.Rev. Biochem. 62, 851–891.
    Article PubMed CAS Google Scholar
  2. McCoy, M. S., Toole, J. J., Cunningham, J. M., Chang, E. H., Lowy, D. R.,and Weinberg, R. A. (1983) Characterization of a human colon/lung carcinoma oncogene. Nature 302, 79–81.
    Article PubMed CAS Google Scholar
  3. Katz, M. E. and McCormick, F. (1997) Signal transduction from multiple Ras effectors. Curr. Opin. Genet. Dev. 7, 75–79.
    Article PubMed CAS Google Scholar
  4. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue.N_ature_ 375, 554–560.
    CAS Google Scholar
  5. Pacold, M. E., Suire, S., Perisic, O., Lara-Gonzalez, S., Davis, C.T., Walker, E. H.,et al. (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103, 931–943.
    Article PubMed CAS Google Scholar
  6. Feig, L. A. and Cooper, G. M. (1988) Inhibition of NIH 3T3 cell proliferation by a mutant Ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8, 3235–3243.
    PubMed CAS Google Scholar
  7. Powers, S., O’Neill, K., and Wigler, M. (1989) Dominant yeast and mammalian Ras mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 390–395.
    PubMed CAS Google Scholar
  8. Quilliam, L. A., Kato, K., Rabun, K. M., Hisaka, M. M., Huff, S. Y., Campbell-Burk, S., et al. (1994) Identification of residues critical for Ras(17N) growth-inhibitory phenotype and for Ras interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14, 1113–1121.
    PubMed CAS Google Scholar
  9. Crechet J. B., Bernardi, A., and Parmeggiani, A. (1996) Distal switch II region of Ras2p is required for interaction with guanine nucleotide exchange factor. J.Biol. Chem. 271, 17,234–17,240.
    Article PubMed CAS Google Scholar
  10. Farnsworth, C. L. and Feig, L. A. (1991) Dominant inhibitory mutations in the Mg(2+)-binding site of RasH prevent its activation by GTP. Mol. Cell. Biol. 11, 4822–4829.
    PubMed CAS Google Scholar
  11. John, J., Rensland, H., Schlichting, I., Vetter, I., Borasio, G. D., Goody, R. S., et al. (1993) Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. J. Biol. Chem. 268, 923–929.
    PubMed CAS Google Scholar
  12. Milburn, M. V., Tong, L., deVos, A. M., Brunger, A., Yamaizumi, Z., Nishimura, S., et al. (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945.
    Article PubMed CAS Google Scholar
  13. Stacey, D. W., Feig, L. A., and Gibbs, J. B. (1991) Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol.Cell. Biol. 11, 4053–4064.
    PubMed CAS Google Scholar
  14. Peterson, S. N., Trabalzini, L., Brtva, T. R., Fischer, T., Altschuler, D. L., Martelli, P.,et al. (1996) Identification of a novel RalGDS-related protein as a candidate effector for Ras and Rap1. J. Biol. Chem. 271, 29,903–29,908.
    Article PubMed CAS Google Scholar
  15. Lenzen, C., Cool, R. H., Prinz, H., Kuhlmann, J., and Wittinghofer, A. (1998) Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry 37, 7420–7430.
    Article PubMed CAS Google Scholar
  16. Lai, C. C., Boguski, M., Broek, D., and Powers, S. (1993) Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol. Cell.Biol. 13, 1345–1352.
    PubMed CAS Google Scholar
  17. Farnsworth, C. L., Marshall, M. S., Gibbs, J. B., Stacey, D. W., and Feig, L. A.(1991) Preferential inhibition of the oncogenic form of RasH by mutations in the GAP binding/“effector” domain. Cell 64, 625–633.
    Article PubMed CAS Google Scholar
  18. Graham, S. M., Vojtek, A. B., Huff, S. Y., Cox, A. D., Clark, G. J., Cooper, J. A.,et al. (1996) TC21 causes transformation by Raf-independent signaling pathways.M_ol. Cell. Biol._ 16, 6132–6140.
    CAS Google Scholar
  19. Rosario, M., Paterson, H. F., and Marshall, C. J. (1999) Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J. 18, 1270–1279.
    Article PubMed CAS Google Scholar
  20. Gotoh, T., Niino, Y., Tokuda, M., Hatase, O., Nakamura, S., Matsuda, M., et al.(1997) Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J. Biol.Chem. 272, 18,602–18,607.
    Article PubMed CAS Google Scholar
  21. Mott, H. R., Carpenter, J. W., and Campbell, S. L. (1997) Structural and functional analysis of a mutant Ras protein that is insensitive to nitric oxide activation.B_iochemistry_ 36, 3640–3644.
    Article CAS Google Scholar
  22. Downward, J., Graves, J. D., Warne, P. H., Rayter, S., and Cantrell, D. A. (1990) Stimulation of p21ras upon T-cell activation. Nature 346, 719–723.
    Article PubMed CAS Google Scholar
  23. Marais, R., Light, Y., Mason, C., Paterson, H., Olson, M. F., and Marshall, C. J.(1998) Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280, 109–112.
    Article PubMed CAS Google Scholar
  24. Szeberenyi, J., Cai, H., and Cooper, G. M. (1990) Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 c_ells. Mol. Cell. Biol._ 10, 5324–5332.
    CAS Google Scholar
  25. van den Berghe, N., Cool, R. H., Horn, G., and Wittinghofer, A. (1997) Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15, 845–850.
    Article PubMed Google Scholar
  26. Cerione, R. A. and Zheng, Y. (1996) The Dbl family of oncogenes. Curr. Opin.Cell Biol. 8, 216–222.
    Article PubMed CAS Google Scholar
  27. Ridley, A. J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.C_ell_ 70, 389–399.
    CAS Google Scholar
  28. Harden, N., Ricos, M., Ong, Y. M., Chia, W., and Lim, L. (1999) Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J. Cell Sci. 112, 273–284.
    PubMed CAS Google Scholar
  29. Missy, K., Van Poucke, V., Raynal, P., Viala, C., Mauco, G., Plantavid, M., et al.(1998) Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation. J. Biol. Chem. 273, 30,279–30,286.
    Article PubMed CAS Google Scholar

Download references