Differentiation of Mouse Thymocytes in Fetal Thymus Organ Culture (original) (raw)

References

  1. Miller, J. F. A. P. (1961) Immunological function of the thymus. Lancet, 748–749.
    Google Scholar
  2. Owen, J. J. T. and Ritter, M. A. (1969) Tissue interaction in the development of thymus lymphocytes. J. Exp. Med. 129, 431–442.
    Article PubMed CAS Google Scholar
  3. Owen, J. J. T. (1974) Ontogeny of the immune system. Prog. in Immunol. 2, 163–173.
    Google Scholar
  4. Mandel, T. and Russel, P. J. (1971) Differentiation of foetal mouse thymus. ultrastructure of organ cultures and of subcapsular grafts. Immunology 21, 659–674.
    PubMed CAS Google Scholar
  5. Mandel, T. E. and Kennedy, M. M. (1978) The differentiation of murine thymocytes in vivo and in vitro. Immunology 35, 317–331.
    PubMed CAS Google Scholar
  6. Jenkinson, E. J., van Ewijk, W., and Owen, J. J. T. (1981) Major histocompatibility complex antigen expression on the epithelium of the developing thymus in normal and nude mice. J. Exp. Med. 153, 280–292.
    Article PubMed CAS Google Scholar
  7. Jenkinson, E. J., Franchi, L. L., Kingston, R., and Owen, J. J. T. (1982) Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: application in the production of chimeric thymus rudiments. Eur. J. Immunol. 12, 583–587.
    Article PubMed CAS Google Scholar
  8. Kingston, R., Jenkinson, E. J., and Owen, J. J. T. (1985) A single stem cell can recolonize an embryonic thymus, producing phenotypically distinct T-cell populations. Nature 317, 811–813.
    Article PubMed CAS Google Scholar
  9. Anderson, G., Jenkinson, E. J., Moore, N. C., and Owen, J. J. T. (1993) MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73.
    Article PubMed CAS Google Scholar
  10. Kisielow, P., Leiserson, W., and von Boehmer, H. (1984) Differentiation of thymocytes in fetal organ culture: analysis of phenotypic changes accompanying the appearance of cytolytic and interleukin-2-producing cells. J. Immunol. 133, 1117–1123.
    PubMed CAS Google Scholar
  11. Ceredig, R. (1988) Differentiation potential of 14-day fetal mouse thymocytes in organ culture. Analysis of CD4-CD8-defined single-positive and double-negative cells. J. Immunol. 141, 355–362.
    PubMed CAS Google Scholar
  12. Husmann, L. A., Shimonkevitz, R. P., Crispe, I. N., and Bevan, M. J. (1988) Thymocyte subpopulations during early fetal development in the BALB/c mouse. J. Immunol. 141, 736–740.
    PubMed CAS Google Scholar
  13. Takahama, Y., Hasegawa, T., Itohara, S., Ball, E. L., Sheard, M. A., and Hashimoto, Y. (1994) Entry of CD4−CD8− immature thymocytes into the CD4/CD8 developmental pathway is controlled by tyrosine kinase signals that can be provided through T cell receptor components. Int. Immunol. 6, 1505–1514.
    Article PubMed CAS Google Scholar
  14. Crompton, T., Gilmour, K. C., and Owen, M. J. (1996) The MAP kinase pathway controls differentiation from double-negative to double positive thymocyte. Cell 86, 243–251.
    Article PubMed CAS Google Scholar
  15. Heemskerk, M. H. M., Blom, B., Nolan, G., Stegmann, A. P. A., Bakker, A. Q., Weijer, K., Res, P. C. M., and Spits, H. (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602.
    Article PubMed CAS Google Scholar
  16. Spain, L. M., Law, L. L., and Takahama, Y. (1998) Retroviral infection of T cell precursors in thymic organ culture, in Developmental Biology Protocols (Tuan, R. S. and Lo, C. W., eds.), Humana Press, Totowa, NJ, in press.
    Google Scholar
  17. Sugawara, T., Di Bartolo, V., Miyazaki, T., Nakauchi, H., Acuto, O., and Takahama, Y. (1998) An improved retroviral transfer technique demonstrates inhibition of CD4−CD8− thymocyte development by kinase-inactive ZAP-70. J. Immunol. 161, 2888–2894.
    PubMed CAS Google Scholar
  18. Ikuta, K., Kina, T., MacNeil, I., Uchida, N., Peault, B., Chien, Y. H., and Weissman, I. L. (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874.
    Article PubMed CAS Google Scholar
  19. Tsuda, S., Rieke, S., Hashimoto, Y., Nakauchi, H., and Takahama, Y. (1996) IL-7 supports D-J but not V-DJ rearrangement of T cell receptor β gene in fetal liver progenitor cells. J. Immunol. 156, 3233–3242.
    PubMed CAS Google Scholar
  20. Sagara, S., Sugaya, K., Tokoro, Y., Tanaka, S., Takano, H., Kodama, H., Nakauchi, H., and Takahama, Y. (1997) B220 expression by T lymphoid progenitor cells in mouse fetal liver. J. Immunol. 158, 666–676.
    PubMed CAS Google Scholar
  21. Theiler, K. (1989) The House Mouse. Springer-Verlag, New York, NY.
    Google Scholar
  22. Kaufman, M. H. (1992) The Atlas of Mouse Development. Academic, San Diego, CA.
    Google Scholar
  23. Butler, H. and Juurlink, B. H. (1987) An Atlas for Staging Mammalian and Chick Embryos. CRC, Boca Raton, FL.
    Google Scholar
  24. Takahama, Y., Suzuki, H., Katz, K. S., Grusby, M. J., and Singer, A. (1994) Positive selection of CD4+ T cells by TCR ligation without aggregation even in the absence of MHC. Nature 371, 67–70.
    Article PubMed CAS Google Scholar
  25. Takahama, Y. and Nakauchi, H. (1996) Phorbol ester and calcium ionophore can replace TCR signals that induce positive selection of CD4 T cells. J. Immunol. 157, 1508–1513.
    PubMed CAS Google Scholar
  26. Tokoro, Y., Tsuda, S., Tanaka, S., Nakauchi, H., and Takahama, Y. (1996) CD3-induced apoptosis of CD4+CD8+ thymocytes in the absence of clonotypic T-cell antigen receptor. Eur. J. Immunol. 26, 1012–1017.
    Article PubMed CAS Google Scholar
  27. Watanabe, Y. and Katsura, Y. (1993) Development of T cell receptor αβ-bearing T cells in the submersion organ culture of murine fetal thymus at high oxygen concentration. Eur. J. Immunol. 23, 200–205.
    Article PubMed CAS Google Scholar

Download references