Structure Analysis of MicroRNA Precursors (original) (raw)

References

  1. Lee, R. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.
    Article CAS PubMed Google Scholar
  2. Lagos-Quintana, M., Rauhut, R., Lendlecker, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.
    Article CAS PubMed Google Scholar
  3. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encode small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.
    Article CAS PubMed Google Scholar
  4. Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669.
    Article CAS PubMed Google Scholar
  5. Largos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.
    Article Google Scholar
  6. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116,281–297.
    Article CAS PubMed Google Scholar
  7. Tomari, Y. and Zamore, P. D. (2005) Perspective: machines for RNAi. Genes Dev. 19, 517–529.
    Article CAS PubMed Google Scholar
  8. Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.
    Article CAS PubMed Google Scholar
  9. Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.
    Article CAS PubMed Google Scholar
  10. Gregory, R. I., Yan, K., Amuthan, G., et al. (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.
    Article CAS PubMed Google Scholar
  11. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2003) Nuclear export of microRNA precursors. Science 303, 95–98.
    Article PubMed Google Scholar
  12. Hutvágner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D.(2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.
    Article PubMed Google Scholar
  13. Cullen, B. R. (2004) Transcription and processing of human microRNA precursors. Mol.Cell 16, 861–865.
    Article CAS PubMed Google Scholar
  14. Zhang, H., Kolb, F., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.
    Google Scholar
  15. Hutvágner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.
    Article PubMed Google Scholar
  16. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.
    Article CAS PubMed Google Scholar
  17. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.
    Article CAS PubMed Google Scholar
  18. Schwarz, D. S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.
    Article CAS PubMed Google Scholar
  19. Krol, J. and Krzyzosiak, W. J. (2004) Structural aspects of microRNA biogenesis. IUBMB Life 56, 95–100.
    Article CAS PubMed Google Scholar
  20. Zeng, Y. and Cullen, B. R. (2003) Sequence requirements for microRNA processing and function in human cells. RNA 9, 112–123.
    Article CAS PubMed Google Scholar
  21. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.
    Article CAS PubMed Google Scholar
  22. Krol, J., Sobczak, K., Wilczynska, U., et al. (2004) Structural features of microRNA precursors and their relevance to miRNA biogenesis and siRNA/shRNA design. J. Biol. Chem. 279, 42,230–42,239.
    Article CAS PubMed Google Scholar
  23. Krzyzosiak, W. J., Napierala, M., and Drozdz, M. (1999) RNA structure modules with trinucleotide repeat motifs. In: RNA Biochemistry and Biotechnology (Barciszewski, J. and Clark, B. F. C., eds.), Kluwer Academic Publishers Dordrecht, pp. 303–314.
    Google Scholar
  24. Krzyzosiak, W. J., Denman, R., Nurse, K., et al. (1987) In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26, 2353–2364.
    Article CAS PubMed Google Scholar
  25. Gaur, R. K., Hanne, A., and Krupp, G. (2004) Combination of chemical and enzymatic RNA synthesis. Methods Mol. Biol. 252, 9–17.
    CAS PubMed Google Scholar
  26. Lee S. S. and Kang, C. (1993) Two base pairs at-9 and-8 distinguish between the bacteriophage T7 and SP6 promoters. J. Biol. Chem. 268, 19,299–19,304.
    CAS PubMed Google Scholar
  27. Shin, I., Kim, J., Cantor, C., and Kang, C. (2000) Effect of saturation mutagenesis of the phage SP6 promoter on transcription activity, presented by activity logos. Proc. Natl. Acad. Sci. USA. 97, 3890–3895.
    Article CAS PubMed Google Scholar
  28. Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J. P., and Ehresmann, B. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128.
    Article CAS PubMed Google Scholar
  29. Giege, R., Helm, M., and Florentz, C. (2001) Classical and novel chemical tools for RNA structure probing. In: RNA (Soll, D., Nishimura, S., and Moore, P. B., eds.), Elsevier Sciences Oxford, pp. 71–89.
    Chapter Google Scholar
  30. Knapp, G. (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 180, 192–212.
    Article CAS PubMed Google Scholar
  31. Napierala, M. and Krzyzosiak, W. J. (1997) CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J. Biol. Chem. 272, 31,079–31,085.
    Article CAS PubMed Google Scholar
  32. Favorova, O. O., Fasiolo, F., Keith, G., Vassilenko, S. K., and Ebel, J. P. (1981) Partial digestion of tRNA—aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease. Biochemistry 20, 1006–1011.
    Article CAS PubMed Google Scholar
  33. Lowman, H. B. and Draper, D. E. (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J. Biol. Chem. 261, 5396–5403.
    CAS PubMed Google Scholar
  34. Marciniec, T. Ciesiolka, J., Wrzesinski, J., and Krzyzosiak, W. J. (1989) Identification of the magnesium, europium and lead binding sites in E. coli and lupine tRNAPhe by specific metal ion-induced cleavages. FEBS Lett. 243, 293–298.
    Article CAS PubMed Google Scholar
  35. Ciesiolka, J., Wrzesinski, J., Gornicki, P., Podkowinski, J., and Krzyzosiak, W. J. (1989) Analysis of magnesium, europium and lead binding sites in methionine initiator and elongator tRNAs by specific metal-ion-induced cleavages. Eur. J. Biochem. 186, 71–77.
    Article CAS PubMed Google Scholar
  36. Wrzesinski, J., Michalowski, D., Ciesiolka, J., and Krzyzosiak, W. J. (1995) Specific RNA cleavages induced by manganese ions. FEBS Lett. 374, 62–68.
    Article CAS PubMed Google Scholar
  37. Streicher, B., Westhof, E., and Schroeder, R. (1996) The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. vn15, 2556–2564.
    Google Scholar
  38. Krzyzosiak, W. J., Marciniec, T., Wiewiorowski, M., Romby, P., Ebel, J. P., and Giege, R.(1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27, 5771–5777.
    Article CAS PubMed Google Scholar
  39. Ciesiolka, J., Michalowski, D., Wrzesinski, J., Krajewski, J., and Krzyzosiak, W. J. (1998) Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J. Mol. Biol. 275, 211–220.
    Article CAS PubMed Google Scholar
  40. Gornicki, P., Baudin, F., Romby, P., et al. (1989) Use of lead(II) to probe the structure of large RNA’s. Conformation of the 3′ terminal domain of E. coli 16S rRNA and its involvement in building the tRNA binding sites. J. Biomol. Struct. Dyn. 6, 971–984.
    CAS PubMed Google Scholar
  41. Michalowski, D., Wrzesinski, J., and Krzyzosiak, W. J. (1996) Cleavages induced by different metal ions in yeast tRNA(Phe) U59C60 mutants. Biochemistry 35, 10,727–10,734.
    Article CAS PubMed Google Scholar
  42. Brown, R. S., Hingerty, B. E., Dewan, J. C., and Klug, A. (1983) Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe-implications for lead toxicity and self-splicing RNA. Nature 303, 543–546.
    Article CAS PubMed Google Scholar
  43. Brown, R. S., Dewan, J. C., and Klug, A. (1985) Crystallographic and biochemical investigation of the lead (II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24, 4785–4801.
    Article CAS PubMed Google Scholar
  44. Pan, T., Long, G. M., and Uhlenbeck, O. C. (1993) Divalent metal ions in RNA folding and catalysis. In: The RNA World (Gesteland, R. F. and Atkins, J. F., eds.), Cold Spring Harbor Laboratory Press New York, pp. 271–302.
    Google Scholar
  45. Pyle, A. M. (1996) Role of metal ions in ribozymes. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., eds.), Marcel Dekker Basel, pp. 479–520.
    Google Scholar
  46. Sobczak, K., de Mezer, M., Michlewski, G., Krol, J., and Krzyzosiak, W. J. (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31, 5469–5482.
    Article CAS PubMed Google Scholar
  47. Michlewski, G. and Krzyzosiak, W. J. (2004) Molecular architecture of CAG repeats in human disease related transcripts. J. Mol. Biol. 340, 665–679.
    Article CAS PubMed Google Scholar
  48. Sobczak, K. and Krzyzosiak, W. J. (2005) CAG repeats containing CAA interruptionsform branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J. Biol. Chem. 280, 3898–3910.
    Article CAS PubMed Google Scholar
  49. Napierala, M., Michalowski, D., de Mezer, M., and Krzyzosiak, W. J. (2005) Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res. 33, 451–463.
    Article CAS PubMed Google Scholar
  50. Sobczak, K. and Krzyzosiak, W. J. (2002) Structural determinants of BRCA1 translational regulation. J. Biol. Chem. 277, 17,349–17,358.
    Article CAS PubMed Google Scholar

Download references