- Mellman, I. (1996) Endocytosis and molecular sorting. Annu. Rev. Cell. Dev. Biol. 12, 575–625.
PubMed CAS Google Scholar
- Buckley, K. M., et al. (2000) Regulation of neuronal function by protein trafficking: a role for the endosomal pathway. J. Physiol. 525, 11–19.
PubMed CAS Google Scholar
- Mansour, M. K. and Levitz, S. M. (2002) Interactions of fungi with phagocytes. Curr. Opin. Microbiol. 5, 359–365.
PubMed CAS Google Scholar
- Lanzavecchia, A. (1996) Mechanisms of antigen uptake for presentation. Curr. Opin. Immunol. 8, 348–54.
PubMed CAS Google Scholar
- Floyd, S. and De Camilli, P. (1998) Endocytosis proteins and cancer: a potential link? Trends Cell. Biol. 8, 299–301.
PubMed CAS Google Scholar
- Pawson, T. (1995) Protein-tyrosine kinases. Getting down to specifics. Nature 373, 477–478.
PubMed CAS Google Scholar
- Roth, T. F. and Porter, K. R. (1964) Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti L. J. Cell. Biol. 20, 313–332.
PubMed CAS Google Scholar
- Pearse, B. M. (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl. Acad. Sci. U. S. A. 73, 1255–1259.
PubMed CAS Google Scholar
- Ungewickell, E. and Branton, D. (1981) Assembly units of clathrin coats. Nature 289, 420–422.
PubMed CAS Google Scholar
- Crowther, R. A. and Pearse, B. M. (1981) Assembly and packing of clathrin into coats. J. Cell. Biol. 91, 790–797.
PubMed CAS Google Scholar
- Keen, J. H., Willingham, M. C. and Pastan, I. H. (1979) Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16, 303–312.
PubMed CAS Google Scholar
- Zaremba, S. and Keen, J. H. (1983) Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J. Cell. Biol. 97, 1339–1347.
PubMed CAS Google Scholar
- Robinson, M. S. and Pearse, B. M. (1986) Immunofluorescent localization of 100K coated vesicle proteins. J. Cell. Biol. 102, 48–54.
PubMed CAS Google Scholar
- Robinson, M. S. and Bonifacino, J. S. (2001) Adaptor-related proteins. Curr. Opin. Cell. Biol. 13, 444–453.
PubMed CAS Google Scholar
- Collins, B. M., et al. (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535.
PubMed CAS Google Scholar
- Hirst, J. and Robinson, M. S. (1998) Clathrin and adaptors. Biochim. Biophys. Acta 1404, 173–193.
PubMed CAS Google Scholar
- McNiven, M. A. (1998) Dynamin: a molecular motor with pinchase action. Cell 94, 151–154.
PubMed CAS Google Scholar
- Song, B. D. and Schmid, S. L. (2003) A molecular motor or a regulator? Dynamin's in a class of its own. Biochemistry 42, 1369–1376.
PubMed CAS Google Scholar
- Munn, A. L. (2001) Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochim. Biophys. Acta 1535, 236–257.
PubMed CAS Google Scholar
- Marsh, M. and McMahon, H. T. (1999) The structural era of endocytosis. Science 285, 215–220.
PubMed CAS Google Scholar
- Evans, P. R. and Owen, D. J. (2002) Endocytosis and vesicle trafficking. Curr. Opin. Struct. Biol. 12, 814–821.
PubMed CAS Google Scholar
- Schafer, D. A. (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell. Biol. 14, 76–81.
PubMed CAS Google Scholar
- Hicke, L. (2001) A new ticket for entry into budding vesicles-ubiquitin. Cell 106, 527–530.
PubMed CAS Google Scholar
- D'Hondt, K., Heese-Peck, A., and Riezman, H. (2000) Protein and lipid requirements for endocytosis. Annu. Rev. Genet. 34, 255–295.
PubMed Google Scholar
- Wong, W. T., et al. (1995) A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl. Acad. Sci. U. S. A. 92, 9530–9534.
PubMed CAS Google Scholar
- Confalonieri, S. and Di Fiore, P. P. (2002) The Eps15 homology (EH) domain. FEBS Lett. 513, 24–29.
PubMed CAS Google Scholar
- Santolini, E., et al. (1999) The EH network. Exp. Cell Res. 253, 186–209.
PubMed CAS Google Scholar
- Fazioli, F., et al. (1993) eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Mol. Cell. Biol. 9, 5814–5828.
Google Scholar
- Paoluzi, S., et al. (1998) Recognition specificity of individual EH domains of mammals and yeast. EMBO J. 17, 6541–6550.
PubMed CAS Google Scholar
- Lewit-Bentley, A. and Rety, S. (2000) EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643.
PubMed CAS Google Scholar
- Yamabhai, M., et al. (1998) Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407.
PubMed CAS Google Scholar
- Mintz, L., et al. (1999) EHD1—an EH-domain-containing protein with a specific expression pattern. Genomics 59, 66–76.
PubMed CAS Google Scholar
- Yamaguchi, A., et al. (1997) An Eps homology (EH) domain protein that binds to the Ral-GTPase target, RalBP1. J. Biol. Chem. 272, 31230–31234.
PubMed CAS Google Scholar
- Pohl, U., et al. (2000) EHD2, EHD3, and EHD4 encode novel members of a highly conserved family of EH domain-containing proteins. Genomics 63, 255–262.
PubMed CAS Google Scholar
- Ikeda, M., et al. (1998) Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral. J. Biol. Chem. 273, 814–821.
PubMed CAS Google Scholar
- Carbone, R., et al. (1997) eps15 and eps15R are essential components of the endocytic pathway. Cancer Res. 57, 5498–5504.
PubMed CAS Google Scholar
- Hofmann, K. and Falquet, L. (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350.
PubMed CAS Google Scholar
- Di Fiore, P. P., Polo, S. and Hofmann, K. (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol. Cell. Biol. 4, 491–497.
PubMed Google Scholar
- Polo, S., et al. (2003) EH and UIM: endocytosis and more. Sci. STKE 213, 17.
Google Scholar
- Klapisz, E., et al. (2002) A ubiquitin-interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J. Biol. Chem. 277, 30746–30753.
PubMed CAS Google Scholar
- van Delft, S., et al. (1997) Epidermal growth factor induces ubiquitination of Eps15. J. Biol. Chem. 272, 14013–10416.
PubMed Google Scholar
- Polo, S., et al. (2002) A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455.
PubMed CAS Google Scholar
- Salcini, A. E., et al. (2001) The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling. Nat. Cell. Biol. 3, 755–760.
PubMed CAS Google Scholar
- Hussain, N. K., et al. (1999) Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J. Biol. Chem. 274, 15671–15677.
PubMed CAS Google Scholar
- Hussain, N. K., et al. (2001) Endocytic protein intersectin-1 regulates actin assembly via Cdc42 and N-WASP. Nat. Cell. Biol. 3, 927–932.
PubMed CAS Google Scholar
- Machesky, L. M. and Insall, R. H. (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 25, 1347–1356.
PubMed CAS Google Scholar
- Sengar, A. S., et al. (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 18, 1159–1171.
PubMed CAS Google Scholar
- Roos, J. and Kelly, R. B. (1998) Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J. Biol. Chem. 273, 19108–19119.
PubMed CAS Google Scholar
- Simpson, F., et al. (1999) SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat. Cell. Biol 1, 119–124.
PubMed CAS Google Scholar
- Caplan, S., et al. (2002) A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 21, 2557–2567.
PubMed CAS Google Scholar
- Galperin, E., et al. (2002) EHD3: a protein that resides in recycling tubular and vesicular membrane structures and interacts with EHD1. Traffic 3, 575–589.
PubMed CAS Google Scholar
- Grant, B., et al. (2001) Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell. Biol. 3, 573–579.
PubMed CAS Google Scholar
- Lin, S. X., et al. (2001) Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 3, 567–572.
PubMed CAS Google Scholar
- Cullis, D. N., et al. (2002) Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J. Biol. Chem. 277, 49158–49166.
PubMed CAS Google Scholar
- Morinaka, K., et al. (1999) Epsin binds to the EH domain of POB1 and regulates receptor-mediated endocytosis. Oncogene 18, 5915–5922.
PubMed CAS Google Scholar
- Kariya, K., et al. (2000) Regulation of complex formation of POB1/epsin/adaptor protein complex 2 by mitotic phosphorylation. J. Biol. Chem. 275, 18399–18406.
PubMed CAS Google Scholar
- Pearse, B. M. and Robinson, M. S. (1990) Clathrin, adaptors, and sorting. Annu. Rev. Cell. Biol. 6, 151–171.
PubMed CAS Google Scholar
- Page, L. J., et al. (1999) Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin. J. Cell. Biol. 146, 993–1004.
PubMed CAS Google Scholar
- Shaw, J. D., et al. (2001) Yeast as a model system for studying endocytosis. Exp. Cell Res. 271, 1–9.
PubMed CAS Google Scholar
- Geli, M. I. and Riezman, H. (1998) Endocytic internalization in yeast and animal cells: similar and different. J. Cell. Sci. 111, 1031–1037.
PubMed CAS Google Scholar
- Baggett, J. J. and Wendland, B. (2001) Clathrin function in yeast endocytosis. Traffic 2, 297–302.
PubMed CAS Google Scholar
- Raths, S., et al. (1993) end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell. Biol. 120, 55–65.
PubMed CAS Google Scholar
- Benedetti, H., et al. (1994) The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast. Mol. Biol. Cell. 5, 1023–1037.
PubMed CAS Google Scholar
- Sachs, A. B. and Deardorff, J. A. (1992) Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast. Cell 70, 961–973.
PubMed CAS Google Scholar
- Wendland, B., et al. (1996) A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J. Cell. Biol. 135, 1485–1500.
PubMed CAS Google Scholar
- Duncan, M. C., et al. (2001) Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell. Biol. 3, 687–690.
PubMed CAS Google Scholar
- Wendland, B. and Emr, S. D. (1998) Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein-protein interactions essential for endocytosis. J. Cell. Biol. 141, 71–84.
PubMed CAS Google Scholar
- Tang, H. Y. and Cai, M. (1996) The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4897–4914.
PubMed CAS Google Scholar
- Gagny, B., et al. (2000) A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis. J. Cell. Sci. 113 3309–3319.
PubMed CAS Google Scholar
- Mueller, T. D. and Feigon, J. (2002) Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J. Mol. Biol. 319, 1243–1255.
PubMed CAS Google Scholar
- Schnell, J. D. and Hicke, L. (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278, 35857–35860.
PubMed CAS Google Scholar
- Mueller, T. D., Kamionka, M., and Feigon, J. (2004) Specificity of the interaction between UBA domains and ubiquitin. J. Biol. Chem. 279, 11926–11936.
PubMed CAS Google Scholar
- Aguilar, R. C., Watson, H. A., and Wendland, B. (2003) The yeast Epsin Ent1 is recruited to membranes through multiple independent interactions. J. Biol. Chem. 278, 10737–10743.
PubMed CAS Google Scholar
- Shih, S. C., et al. (2002) Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat. Cell Biol. 4, 389–393.
PubMed CAS Google Scholar
- Smith, J. S., Caputo, E., and Boeke, J. D. (1999) A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol. Cell. Biol. 19, 3184–3197.
PubMed CAS Google Scholar
- Benmerah, A., et al. (1995) The tyrosine kinase substrate eps15 is constitutively associated with the plasma membrane adaptor AP-2. J. Cell. Biol. 131, 1831–1838.
PubMed CAS Google Scholar
- Coda, L., et al. (1998) Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization. J. Biol. Chem. 273, 3003–3012.
PubMed CAS Google Scholar
- Benmerah, A., et al. (1996) The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps 15 protein. J. Biol. Chem. 271, 12111–12116.
PubMed CAS Google Scholar
- Iannolo, G., et al. (1997) Mapping of the molecular determinants involved in the interaction between eps15 and AP-2. Cancer Res. 57, 240–245.
PubMed CAS Google Scholar
- Benmerah, A., et al. (1998) AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J. Cell. Biol. 140, 1055–1062.
PubMed CAS Google Scholar
- Benmerah, A., et al. (1999) Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112 1303–1311.
PubMed CAS Google Scholar
- Benmerah, A., et al. (2000) Mapping of Eps15 domains involved in its targeting to clathrin-coated pits. J. Biol. Chem. 275, 3288–3295.
PubMed CAS Google Scholar
- Tebar, F., et al. (1996) Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730.
PubMed CAS Google Scholar
- Cupers, P., Jadhav, A. P., and Kirchhausen, T. (1998) Assembly of clathrin coats disrupts the association between Eps15 and AP-2 adaptors. J. Biol. Chem. 273, 1847–1850.
PubMed CAS Google Scholar
- Morgan, J. R., et al. (2003) Eps15 homology domain-NPF motif interactions regulate clathrin coat assembly during synaptic vesicle recycling. J. Biol. Chem. 278, 33583–33592.
PubMed CAS Google Scholar
- Sorkina, T., et al. (1999) Clathrin, adaptors and eps15 in endosomes containing activated epidermal growth factor receptors. J. Cell. Sci. 112 317–327.
PubMed CAS Google Scholar
- Torrisi, M., et al. (1999) Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization. Mol. Biol. Cell. 10, 417–434.
PubMed CAS Google Scholar
- Leof, E. B. (2000) Growth factor receptor signalling: location, location, location. Trends Cell. Biol. 10, 343–348.
PubMed CAS Google Scholar
- Whitacre, J., et al. (2001) Generation of an isogenic collection of yeast actin mutants and identification of three interrelated phenotypes. Genetics 157, 533–543.
PubMed CAS Google Scholar
- Ayscough, K. R. (2000) Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton. Curr. Biol. 10, 1587–1590.
PubMed CAS Google Scholar
- Ayscough, K. R., et al. (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell. Biol. 137, 399–416.
PubMed CAS Google Scholar
- Qualmann, B., Kessels, M. M. and Kelly, R. B. (2000) Molecular links between endocytosis and the actin cytoskeleton. J. Cell. Biol. 150, F111-F116.
PubMed CAS Google Scholar
- Engqvist-Goldstein, A. E. and Drubin, D. G. (2003) Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287–332.
PubMed CAS Google Scholar
- Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514.
PubMed CAS Google Scholar
- Rohatgi, R., et al. (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231.
PubMed CAS Google Scholar
- Higgs, H. N. and Pollard, T. D. (1999) Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J. Biol. Chem. 274, 32531–32534.
PubMed CAS Google Scholar
- Merrifield, C. J., et al. (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat. Cell. Biol. 1, 72–74.
PubMed CAS Google Scholar
- Jenna, S., et al. (2002) The activity of the GTPase-activating protein CdGAP is regulated by the endocytic protein intersectin. J. Biol. Chem. 277, 6366–6373.
PubMed CAS Google Scholar
- Zhang, J. et al. (1999) Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. 190, 1329–1342.
PubMed CAS Google Scholar
- Pucharcos, C., Estivill, X., and de la Luna, S. (2000) Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett. 478, 43–51.
PubMed CAS Google Scholar
- McGavin, M. K., et al. (2001) The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis. J. Exp. Med. 194, 1777–1787.
PubMed CAS Google Scholar
- Tang, H. Y., Munn, A., and Cai, M. (1997) EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 4294–4304.
PubMed CAS Google Scholar
- Schott, D., Huffaker, T., and Bretscher, A. (2002) Microfilaments and microtubules: the news from yeast. Curr. Opin. Microbiol. 5, 564–574.
PubMed CAS Google Scholar
- Wendland, B., Steece, K. E. and Emr, S. D. (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J. 18, 4383–4393.
PubMed CAS Google Scholar
- Salcini, A. E., et al. (1997) Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev. 11, 2239–2249.
PubMed CAS Google Scholar
- Uemura, T., et al. (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360.
PubMed CAS Google Scholar
- Bogerd, H. P., et al. (1995) Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82, 485–494.
PubMed CAS Google Scholar
- Fritz, C. C., Zapp, M. L. and Green, M. R. (1995) A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 376, 530–533.
PubMed CAS Google Scholar
- de Beer, T., et al. (2000) Molecular mechanism of NPF recognition by EH domains. Nat. Struct. Biol. 7, 1018–1022.
PubMed Google Scholar
- Kim, S., et al. (2001) Solution structure of the Reps1 EH domain and characterization of its binding to NPF target sequences. Biochemistry 40, 6776–6685.
PubMed CAS Google Scholar
- de Beer, T., et al. (1998) Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. Science 281, 1357–1360.
PubMed Google Scholar
- Cullen, B. R. (1998) Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249, 203–210.
PubMed CAS Google Scholar
- Fischer, U., et al. (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483.
PubMed CAS Google Scholar
- Fridell, R. A., Bogerd, H. P. and Cullen, B. R. (1996) Nuclear export of late HIV-1 mRNAs occurs via a cellular protein export pathway. Proc. Natl. Acad. Sci. U. S. A. 93, 4421–4424.
PubMed CAS Google Scholar
- Fritz, C. C. and Green, M. R. (1996) HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6, 848–854.
PubMed CAS Google Scholar
- Roth, J., et al. (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the hu_M_an immunodeficiency virus rev protein. EMBO J. 17, 554–564.
PubMed CAS Google Scholar
- Doria, M., et al. (1999) The eps15 homology (EH) domain-based interaction between eps15 and hrb connects the molecular machinery of endocytosis to that of nucleocytosolic transport. J. Cell. Biol. 14, 1379–1384.
Google Scholar
- Poupon, V., et al. (2002) Differential nucleocytoplasmic trafficking between the related endocytic proteins Eps15 and Eps15R. J. Biol. Chem. 277, 8941–8948.
PubMed CAS Google Scholar
- Vecchi, M., et al. (2001) Nucleocytoplasmic shuttling of endocytic proteins. J. Cell. Biol. 153, 1511–1517.
PubMed CAS Google Scholar
- Santolini, E., et al. (2000) Numb is an endocytic protein. J. Cell. Biol. 151, 1345–1352.
PubMed CAS Google Scholar
- Frise, E., et al. (1996) The Drosophila Nu_M_b protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc. Natl. Acad. Sci. U. S. A. 93,21): p. 11925–32.
PubMed CAS Google Scholar
- Guo, M., Jan, L. Y. and Jan, Y. N. (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41.
PubMed Google Scholar
- Berdnik, D., et al. (2002) The endocytic protein alpha-Adaptin is required for nu_M_b-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231.
PubMed CAS Google Scholar
- McPherson, P. S., et al. (1996) A presynaptic inositol-5-phosphatase. Nature 379, 353–357.
PubMed CAS Google Scholar
- Haffner, C., et al. (1997) Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett. 419, 175–180.
PubMed CAS Google Scholar
- Cremona, O., et al. (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188.
PubMed CAS Google Scholar
- Cleves, A. E., Novick, P. J., and Bankaitis, V. A. (1989) Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J. Cell. Biol. 109, 2939–2950.
PubMed CAS Google Scholar
- de Heuvel, E., et al. (1997) Identification of the major synaptojanin-binding proteins in brain. J. Biol. Chem. 272, 8710–8716.
PubMed Google Scholar
- Reutens, A. T. and Begley, C. G. (2002) Endophilin-1: a multifunctional protein. Int. J. Biochem. Cell. Biol. 34, 1173–1177.
PubMed CAS Google Scholar
- Srinivasan, S., et al. (1997) Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J. Cell. Biol. 74, 350–360.
PubMed CAS Google Scholar
- Singer-Kruger, B., et al. (1998) Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J. Cell Sci. 111, 3347–3356.
PubMed CAS Google Scholar
- De Camilli, P., et al. (2002) The ENTH domain. FEBS Lett. 513, 11–18.
PubMed Google Scholar
- Chen, H., et al. (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797.
PubMed CAS Google Scholar
- Itoh, T., et al. (2001) Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051.
PubMed CAS Google Scholar
- Wendland, B., (2002) Epsins: adaptors in endocytosis? Nat. Rev. Mol. Cell. Biol. 3, 971–977.
PubMed CAS Google Scholar
- Lohi, O., et al. (2002) VHS domain—a long-shoreman of vesicle lines. FEBS Lett. 513, 19–23.
PubMed CAS Google Scholar
- Lohi, O. and Lehto, V. P. (1998) VHS domain marks a group of proteins involved in endocytosis and vesicular trafficking. FEBS Lett. 440, 255–257.
PubMed CAS Google Scholar
- Steen, H., et al. (2002) Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031–1039.
PubMed CAS Google Scholar
- Bean, A. J., et al. (2000) Hrs-2 regulates receptor-mediated endocytosis via interactions with Eps15. J. Biol. Chem. 275, 15271–15278.
PubMed CAS Google Scholar
- Ahle, S. and Ungewickell, E. (1986) Purification and properties of a new clathrin assembly protein. EMBO J. 5, 3143–3149.
PubMed CAS Google Scholar
- Morris, S. A., et al. (1993) Clathrin assembly protein AP180: primary structure, domain organization and identification of a clathrin binding site. EMBO J. 12, 667–675.
PubMed CAS Google Scholar
- Tebar, F., Bohlander, S. K., and Sorkin, A. (1999) Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol. Biol. Cell. 10, 2687–2702.
PubMed CAS Google Scholar
- Ford, M. G., et al. (2001) Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055.
PubMed CAS Google Scholar
- Ford, M. G., et al. (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366.
PubMed CAS Google Scholar
- Stahelin, R. V., et al. (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999.
PubMed CAS Google Scholar
- Baggett, J. J., DiAquino, K. E., and Wendland, B. (2003) The Sla2p Talin Homology Domain plays a role in Endocytosis in Saccharomyces cerevisiae. Genetics. 165, 1661–1674.
PubMed CAS Google Scholar
- Zhang, B., et al. (1998) Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475.
PubMed CAS Google Scholar
- Engqvist-Goldstein, A. E., et al. (1999) An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell. Biol. 147, 1503–1518.
PubMed CAS Google Scholar
- Engqvist-Goldstein, A. E., et al. (2001) The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell. Biol. 154, 1209–1223.
PubMed CAS Google Scholar
- Mishra, S. K., et al. (2001) Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins. J. Biol. Chem. 276, 46230–46236.
PubMed CAS Google Scholar
- Waelter, S., et al. (2001) The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Human Mol. Genet. 10, 1807–1817.
CAS Google Scholar
- Metzler, M., et al. (2001) HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem. 276, 39271–19276.
PubMed CAS Google Scholar
- Legendre-Guillemin, V., et al. (2002) HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem. 277, 19897–19904.
PubMed CAS Google Scholar
- Henry, K. R., et al. (2002) Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol. Biol. Cell. 13, 2607–2625.
PubMed CAS Google Scholar
- Tang, H. Y., Xu, J., and Cai, M. (2000) Pan1p, End3p, and Sla1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol. Cell. Biol. 20, 12–25.
Article PubMed CAS Google Scholar
- Howard, J. P., et al. (2002) Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis. J. Cell. Biol. 157, 315–326.
PubMed CAS Google Scholar
- Tan, P. K., Howard, J. P., and Payne, G. S. (1996) The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae. J. Cell. Biol. 135, 1789–1800.
PubMed CAS Google Scholar
- Goode, B. L., et al. (2001) Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J. Cell. Biol. 153, 627–634.
PubMed CAS Google Scholar
- Li, R. (1997) Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell. Biol. 136, 649–658.
PubMed CAS Google Scholar
- Smythe, E. and Ayscough, K. R. (2003) The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep. 4, 246–251.
PubMed CAS Google Scholar
- Zeng, G. and Cai, M. (1999) Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J. Cell. Biol. 144, 71–82.
PubMed CAS Google Scholar
- Zeng, G., Yu, X., and Cai, M. (2001) Regulation of yeast actin cytoskeleton-regulatory complex Pan1p/Sla1p/End3p by serine/threonine kinase Prk1p. Mol. Biol. Cell. 12, 3759–3772.
PubMed CAS Google Scholar
- Cope, M. J., et al. (1999) Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J. Cell. Biol. 144, 1203–1218.
PubMed CAS Google Scholar
- Watson, H. A., et al. (2001) In vivo role for actin-regulating kinases in endocytosis and yeast epsin phosphorylation. Mol. Biol. Cell. 12, 3668–3679.
PubMed CAS Google Scholar
- Korolchuk, V. I. and Banting, G. (2002) CK2 and GAK/auxilin2 are major protein kinases in clathrin-coated vesicles. Traffic 3, 428–439.
PubMed CAS Google Scholar
- Conner, S. D. and Schmid, S. L. (2002) Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell. Biol. 156, 921–929.
PubMed CAS Google Scholar
- Olusanya, O., et al. (2001) Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 11, 896–900.
PubMed CAS Google Scholar
- Cousin, M. A. and Robinson, P. J. (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 24, 659–665.
PubMed CAS Google Scholar
- Chen, H., et al. (1999) The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 274, 3257–3260.
PubMed CAS Google Scholar
- Rohatgi, R., Ho, H. Y., and Kirschner, M. W. (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J. Cell. Biol. 150, 1299–1310.
PubMed CAS Google Scholar
- Pruitt, W. M., et al. (2003) Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. Biochim Biophys Acta, 1640,1): p. 61–8.
PubMed CAS Google Scholar
- Zamanian, J. L. and Kelly R.B. (2003) Intersectin 1L guanine nucleotide exchange activity is regulated by adjacent src homology 3 domains that are also involved in endocytosis. Mol. Biol. Cell. 14, 1624–1637.
PubMed CAS Google Scholar
- Miliaras, N. B., Park, H. S., McCaffery, J. M., Wendland, B. Submitted.
- Tebar, F., et al. (1997) Eps15 is constitutively oligomerized due to homophilic interaction of its coiled-coil region. J. Biol. Chem. 272, 15413–15418.
PubMed CAS Google Scholar
- Cupers, P., et al. (1997) Parallel dimers and anti-parallel tetramers formed by epidermal growth factor receptor pathway substrate clone 15. J. Biol. Chem. 272, 33430–33434.
PubMed CAS Google Scholar