Bile acids are toxic for isolated cardiac mitochondria (original) (raw)

References

  1. Greim, H., Trulzch, D., Czygan, P., Rudick, J. Hutterer, F., Schaffner, F., and Popper, H. (1972). Mechanisms of cholestasis. 6. Bile salts in human livers with or without biliary obstruction. Gastroenterology 63:846–850.
    PubMed CAS Google Scholar
  2. Shivaram, K.N., Winklhofer-Roob, B.M., Straka, M.S., Devereaux, M.W., Everson, G., Mierau, G.W., and Sokol, R.J. (1998). The effect of idebenone, a coenzyme analogue, on hydrophobic bile acid toxicity to isolated rat hepatocytes and hepatic mitochondria. Free Rad. Biol. Med. 25: 480–492.
    Article PubMed CAS Google Scholar
  3. Sokol, R.J., McKim, J.M., Goff, M.C., Ruyle, S.Z., Devereaux, M.W., Han, D., et al. (1998). Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochemodeoxycholic acid in the rat. Gastroenterology 114:164–174.
    Article PubMed CAS Google Scholar
  4. Rodrigues, C.M.P. and Steer, C.J. (2000). Mitochondrial membrane perturbations in cholestasis. J. Hepatol. 32: 135–141.
    Article PubMed CAS Google Scholar
  5. Krahenbuhl, S., Talos, C., Fischer, S., and Reichen, J. (1994). Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19:471–479.
    PubMed CAS Google Scholar
  6. Guldutuna, S., Zimmer, G., Leuschner, M., Bhatti, S., Elze, A., Deisinger, B., et al. (1999). The effect of bile salts and calcium on isolated rat liver mitochondria. Biochim. Biophys. Acta 1453:396–406.
    PubMed CAS Google Scholar
  7. Rolo, A.P., Oliveira, P.J., Moreno, A.J.M., and Palmeira, C.M. (2000). Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol. Sci. 57:177–185.
    Article PubMed CAS Google Scholar
  8. Zoratti, M. and Szabò, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241:139–176.
    PubMed Google Scholar
  9. Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E. (2201). Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495:12–15.
    Article Google Scholar
  10. Kroemer, G. and Reed, J.C. (2000). Mitochondrial control of cell death. Nature Med. 6:513–519.
    Article PubMed CAS Google Scholar
  11. Gores, G.J., Miyoshi, H., Botla, R., Aguilar, H.I., and Bronk, S.F. (1998). Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochim. Biophys. Acta 1366:167–175.
    Article PubMed CAS Google Scholar
  12. Yerushalmi, B., Dahl, R., Devereaux, M.W., Gumpricht, E., and Sokol, R.J. (2001). Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33: 616–626.
    Article PubMed CAS Google Scholar
  13. Lee, S.S. and Bomzon, A. (1990). The heart in liver disease, in: Cardiovascular Complications of Liver Disease (Bomzon, A. and Blendis, L.M., eds.) CRC, Boca Raton, FL: pp. 81–102.
    Google Scholar
  14. Moller, S. and Henriksen, J.H. (2002). Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease. Heart 87:9–15.
    Article PubMed CAS Google Scholar
  15. Gazawi, H., Ljubuncic, P., Cogan, U., Hochgraff, E., Ben-Shachar, D., and Bomzon, A. (2000). The effects of bile acids on β-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem. Pharmacol. 59:1623–1628.
    Article PubMed CAS Google Scholar
  16. Williamson, C., Gorelik, J., Eaton, B.M., Lab, M., de Swiet, M., and Korchev, Y. (2001). The bile acid taaurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis. Clin. Sci. 100:363–369.
    Article PubMed CAS Google Scholar
  17. Rolo, A.P., Oliveira, P.J., Seiça, R., Santos, M.S., Moreno, A.J., and Palmeira, C.M. (2002). Improved efficiency of hepatic mitochondrial function in rats with cholestasis induced by an acute dose of alfa-naphtylisothiocyanate. Toxicol. Appl. Pharmacol. 182:20–26.
    Article PubMed CAS Google Scholar
  18. Rolo, A.P., Oliveira, P.J., Seiça, R., Santos, M.S., Moreno, A.J., and Palmeira, C.M. (2002). Disruption of mitochondrial calcium homeostasis after chronic α-naphthylisothiocyanate administration: relevance for cholestasis. J. Investig. Med. 50:193–200.
    PubMed CAS Google Scholar
  19. Oliveira, P.J., Rolo, A.P., Seiça, R., Santos, M.S., Palmeira, C.M., and Moreno, A.J. (2003a). Reduction in cardiac mitochondrial calcium loading capacity is observable during α-naphylisothiocyanate-induced acute cholestasis: a clue for hepatic-derived cardiomyopathies? Biochim. Biophys. Acta 1637:39–45.
    PubMed CAS Google Scholar
  20. Oliveira, P.J., Rolo, A.P., Seica, R., Santos, M.S., Palmeira, C.M., and Moreno, A.J. (2003b). Cardiac mitochondrial calcium loading capacity is severely affected after chronic cholestasis in Wistar rats. J. Invest. Med. 51:86–94.
    CAS Google Scholar
  21. Fischer, S., Beuers, U., Spengler, U., Zwiebel, F.M., and Koebe, H.-G. (1996). Hepatic levels of bile acids in endstage chronic cholestatic liver disease. Clin. Chim. Acta 251:173–186.
    Article PubMed CAS Google Scholar
  22. (No authors listed) (1996). Principles of Laboratory Animal Care. NIH publication No. 85-23. National Institutes of Health, Bethesda, MD.
  23. Oliveira, P.J., Santos, D.L., and Moreno, A.J.M. (2000). Carvedilol inhibits the exogenous NADH dehydrogenase in rat heart mitochondria. Arch. Biochem. Biophys. 374: 279–285.
    Article PubMed CAS Google Scholar
  24. Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979). Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membrane Biol. 49:105–121.
    Article CAS Google Scholar
  25. Broekemeier, K.M., Dempsey, M.E., and Pfeiffer, D.R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane mitochondrial transition in liver mitochondria. J. Biol. Chem. 264:7826–7830.
    PubMed CAS Google Scholar
  26. Makino, I., Nakagawa, S., and Mashimo, K. (1969). Conjugated and unconjugated serum bile acid levels in patients with hepatobiliary diseases Gastroenterology 56:1033–1039.
    PubMed CAS Google Scholar
  27. Ostrow, J.D. (1993). Metabolism of bile salts in cholestasis in humans, in Hepatic Transport and Bile Secretion: Physiology and Pathophysiology (Tavoloni, N. and Berk, P.D., eds.), Raven, New York: pp. 673–712.
    Google Scholar
  28. Bartholomew, T.C., Summerfield, J.A., Billing, B.H., and Lawson, A.M. (1982). Bile acid profiles of human serum and skin interstitial fluid and their relationship to pruritus studied by gas chromatography-mass spectrometry. Clin. Sci. 63:65–73.
    PubMed CAS Google Scholar

Download references