Carboxylation and anaplerosis in neurons and glia (original) (raw)
Hassel B. and Bråthe A. (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J. Neurosci.20, 1342–1347. PubMedCAS Google Scholar
Hassel B. and Bråthe A. (2000) Cerebral metabolism of lactate in vivo. Evidence for neuronal pyruvate carboxylation. J. Cereb. Blood Flow Metab.20, 327–336. PubMedCAS Google Scholar
Vogel R., Jennemann G., Seitz J., Wiesinger H., and Hamprecht B. (1998) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocyto-chemical localization in neurons of rat brain. J. Neurochem.71, 844–852. ArticlePubMedCAS Google Scholar
Cruz F., Scott S. R., Barroso I., Santisteban P., and Cerdan S. (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J. Neurochem.70, 2613–2619. ArticlePubMedCAS Google Scholar
McKenna M. C., Stevenson J. H., Huang X., Tildon J. T., Zielke C. L., and Hopkins I. B. (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem. Int.36, 451–459. PubMedCAS Google Scholar
Hertz L., Dringen R., Schousboe A., and Robinson S. R. (1999) Astrocytes: glutamate producers for neurons. J. Neurosci. Res.57, 417–428. PubMedCAS Google Scholar
Daikhin Y. and, Yudkoff M. (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr.130 (Suppl), 1026S-1031S. PubMedCAS Google Scholar
Sokoloff L. (1989) Circulation and energy metabolism of the brain, in Basic Neurochemistry, 4th ed. (Siegel G., Agranoff B., Albers R. W., and Molinoff P., eds.), Raven Press, New York, pp. 565–590. Google Scholar
Miller L. P., Pardridge W. M., Braun L. D., and Oldendorf W. H. (1985) Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem.45, 1427–1432. PubMedCAS Google Scholar
Braun L. D., Miller L. P., Pardridge W. M., and Oldendorf W. H. (1985) Kinetics of regional blood-brain barrier glucose transport and cerebral blood flow determined with the carotid injection technique in conscious rats. J. Neurochem.44, 911–915. PubMedCAS Google Scholar
Life Technologies (1998) 1998/1999 Catalogue for GIBCOBRL Cell Culture products, pp. 2-46–2-47.
Patel A. J. and Hunt A. (1985) Concentration of free amino acids in primary cultures of neurones and astrocytes. J. Neurochem.44, 1816–1821. PubMedCAS Google Scholar
Hassel B., Sonnewald U., Unsgard G., and Fonnum F. (1994) NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J. Neurochem.62, 2187–2194. ArticlePubMedCAS Google Scholar
Crane R. K. and Ball E. G. (1951) Relationship of 14CO2 fixation to carbohydrate metabolism in retina. J. Biol. Chem.189, 269–276. PubMedCAS Google Scholar
Moldave K., Winzler R. J., and Pearson H. E. (1953) The incorporation in vitro of C14 into amino acids of control and virus-infected mouse brain. J. Biol. Chem.200, 357–365. PubMedCAS Google Scholar
Cheng S.-C. (1971) CO2 fixation in the nervous tissue, in International Review of Neurobiology, vol. 14 (Pfeiffer C. C. and Smythies J. R., eds.), Academic Press, New York, pp. 125–157. Google Scholar
Kurz G. M., Wiesinger H., and Hamprecht B. (1993) Purification of cytosolic malic enzyme from bovine brain, generation of monoclonal antibodies, and immunocytochemical localization of the enzyme in glial cells of neural primary cultures. J. Neurochem.60, 1467–1474. PubMedCAS Google Scholar
McKenna M. C., Tildon J. T., Stevenson J. H., Huang X., and Kingwell K. G. (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem. Res.12, 1491–501. Google Scholar
Russell R. R. III, and Taegtmeyer H. (1991) Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am. J. Physiol.261, H1756-H1762. PubMedCAS Google Scholar
Shank R. P., Campbell G. L., Freytag S. O., and Utter M. F. (1981) Evidence that pyruvate carboxylase is an astrocyte specific enzyme in CNS tissues. Abstr. Soc. Neurosci.7, 936. Google Scholar
Shank R. P., Bennett G. S., Freytag S. O., and Campbell G. L. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res.329, 364–367. PubMedCAS Google Scholar
Yu A. C. H., Drejer J., Hertz L., and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem.41, 1484–1487. PubMedCAS Google Scholar
Cesar M. and Hamprecht B. (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J. Neurochem.64, 2312–2318. ArticlePubMedCAS Google Scholar
Cheng S.-C. and Cheng R. H. (1972) A mitochondrial phosphoenolpyruvate carboxykinase from rat brain. Arch. Biochem. Biophys.151, 501–511. PubMedCAS Google Scholar
Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem.22, 717–724. PubMedCAS Google Scholar
Wiese T. J., Lambeth D. O., and Ray P. D. (1991) The intracellular distribution and activities of phosphoenolpyruvate carboxykinase isozymes in various tissues of several mammals and birds. Comp. Biochem. Physiol. B100, 297–302. PubMedCAS Google Scholar
Schmoll D., Fuhrmann E., Gebhardt R., and Hamprecht B. (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur. J. Biochem.227, 308–315. PubMedCAS Google Scholar
Rognstad R. (1982) 14CO2 fixation by phosphoenolpyruvate carboxykinase during glyconeogenesis in the intact rat liver cell. J. Biol. Chem.257, 11,486–11,488. CAS Google Scholar
Lane M. D., Chang H. C., and Miller R. S. (1969) Phosphoenolpyruvate carboxykinase from pig liver mitochondria, in Methods in Enzymology, vol. 13 (Lowenstein J. M., ed.), Academic Press, New York, pp. 270–277. Google Scholar
Kusakabe T., Maeda M., Hoshi N., Sugino T., Watanabe K., Fukuda T., and Suzuki T. (2000) Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells. J. Histochem. Cytochem.48, 613–622. PubMedCAS Google Scholar
Cammer W. (1991) Immunostaining of carbamoylphosphate synthase II and fatty acid synthase in glial cells in rat, mouse, and hamster brains suggests roles for carbonic anhydrase in biosynthetic processes. Neurosci. Lett.129, 247–250. PubMedCAS Google Scholar
Cammer W. and Downing M. (1991) Localization of the multifunctional protein CAD in astrocytes of rodent brain. J. Histochem. Cytochem.39, 695–700. PubMedCAS Google Scholar
Sun D., Swaffield J. C., Johnston S. A., Milligan C. E., Zoeller R. T., and Schwartz L. M. (1997) Identification of a phylogenetically conserved Sug1 CAD family member that is differentially expressed in the mouse nervous system. J. Neurobiol.33, 877–890. PubMedCAS Google Scholar
Appel S. H. and Silverberg D. H. (1968) Pyrimidine synthesis in tissue culture. J. Neurochem.15, 1437–1443. PubMedCAS Google Scholar
Allsop J. and Watts R. W. (1983) Purine de novo synthesis in liver and developing rat brain, and the effect of some inhibitors of purine nucleotide interconversion. Enzyme30, 172–180. PubMedCAS Google Scholar
Pardridge W. M. and Oldendorf W. H. (1977) Transport of metabolic substrates through the blood-brain barrier. J. Neurochem.28, 5–12. PubMedCAS Google Scholar
Lahoya J. L., Benavides J., and Ugarte M. (1980) Glycine metabolism and glycine synthase activity during the postnatal development of rat brain. Dev. Neurosci.3, 75–80. PubMedCAS Google Scholar
Sato K., Yoshida S., Fujiwara K., Tada K., and Tohyama M. (1991) Glycine cleavage system in astrocytes. Brain Res.567, 64–70. PubMedCAS Google Scholar
Cheng S.-C. and Nakamura R. (1972) Metabolism related to the tricarboxylic acid cycle in rat brain slices. Observations on CO2 fixation and metabolic compartmentation. Brain Res.38, 355–370. PubMedCAS Google Scholar
Salganicoff L. and Koeppe R. E. (1968) Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J. Biol. Chem.243, 3416–3420. PubMedCAS Google Scholar
Wolever T. M., Josse R. G., Leiter L. A., and Chiasson J. L. (1997) Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism46, 805–811. PubMedCAS Google Scholar
Suchy S. F. and Wolf B. (1986) Effect of biotin deficiency and supplementation on lipid metabolism in rats: cholesterol and lipoproteins. Am. J. Clin. Nutr.43, 831–838. PubMedCAS Google Scholar
Rodriguez-Pombo P., Sweetman L., and Ugarte M. (1992) Primary cultures of astrocytes from rat as a model for biotin deficiency in nervous tissue. Mol. Chem. Neuropathol.16, 33–44. ArticlePubMedCAS Google Scholar
Murthy C. R. and Hertz L. (1987) Acute effect of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures. J. Neurochem.49, 735–741. PubMedCAS Google Scholar
Bixel M. G. and Hamprecht B. (2000) Immunocytochemical localization of beta-methyl-crotonyl-CoA carboxylase in astroglial cells and neurons in culture. J. Neurochem.74, 1059–1067. PubMedCAS Google Scholar
Buniatian H. C. and Davtian M. A. (1966) Urea synthesis in brain. J. Neurochem.13, 743–753. PubMedCAS Google Scholar
Braissant O., Gotoh T., Loup M., Mori M., and Bachmann C. (1999) L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study. Brain. Res. Mol. Brain Res.70, 231–241. PubMedCAS Google Scholar
Furie B., Bouchard B. A., and Furie B. C. (1999) Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood93, 1798–1808. PubMedCAS Google Scholar
Stenflo J., Ferlund P., Egan W., and Roepstorff P. (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl. Acad. Sci. USA71, 2730–2733. PubMedCAS Google Scholar
Price P. A. and Williamson M. K. (1985) Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J. Biol. Chem.260, 14971–14975. PubMedCAS Google Scholar
Manfioletti G., Brancolini C., Avanzi G., and Schneider C. (1993) The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol. Cell. Biochem.13, 4976. CAS Google Scholar
Nakano T., Kawamoto K., Kishino J., Nomura K., Higashino K., and Arita H. (1997) Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem. J.323, 387–392. PubMedCAS Google Scholar
de Boer-van den Berg M. A., Thijssen H. H., and Vermeer C. (1986) The in vivo effects of acenocoumarol, phenprocoumon and warfarin on vitamin K epoxide reductase and vitamin K-dependent carboxylase in various tissues of the rat. Biochim. Biophys. Acta884, 150–157. PubMed Google Scholar
Prieto A. L., Weber J. L., Tracy S., Heeb M. J., and Lai C. (1999) Gas6, a ligand for the receptor protein-tyrosine kinase Tyro-3, is widely expressed in the central nervous system. Brain Res.816, 646–661. PubMedCAS Google Scholar
Kulman J. D., Harris J. E., Haldeman B. A., and Davie E. W. (1997) Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc. Natl. Acad. Sci. USA94, 9058–9062. PubMedCAS Google Scholar
Pati S. and Helmbrecht G. D. (1994) Congenital schizencephaly associated with in utero warfarin exposure. Reprod. Toxicol.8, 115–120. PubMedCAS Google Scholar
Brown M. A., Stenberg L. M., Persson U., and Stenflo J. (2000) Identification and purification of vitamin K-dependent proteins and peptides with monoclonal antibodies specific for gamma -carboxyglutamyl (Gla) residues. J. Biol. Chem.275, 19,795–19,802. CAS Google Scholar
Waelsch H., Berl S., Rossi C. A., Clarke D. D., and Purpura D. P. (1964) Quantitative aspects of CO2 fixation in mammalian brain in vivo. J. Neurochem.11, 717–728. PubMedCAS Google Scholar
Henn F. A., Goldstein M. N., and Hamberger A. (1974) Uptake of the neurotransmitter candidate glutamate by glia. Nature249, 663–664. PubMedCAS Google Scholar
Divac I., Fonnum F., and Storm-Mathisen J. (1977) High affinity uptake of glutamate in terminals of corticostriatal axons. Nature266, 377–378. PubMedCAS Google Scholar
Haugeto O., Ullensvang K., Levy L. M., Chaudhry F. A., Honoré T., Nielsen M., et al. (1996) Brain glutamate transporter proteins form homomultimers. J. Biol. Chem.271, 27,715–27,722. Google Scholar
Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., et al. (1990) Cloning and expression of a rat brain GABA transporter. Science249, 1303–1306. PubMedCAS Google Scholar
Radian R., Ottersen O. P., Storm-Mathisen J., Castel M., and Kanner B. I. (1990) Immunocytochemical localization of the GABA transporter in rat brain. J. Neurosci.10, 1319–1330. PubMedCAS Google Scholar
Balázs R., Machiyama Y., Hammond B. J., Julian T., and Richter D. (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem. J.116, 445–461. PubMed Google Scholar
Hassel B., Paulsen R. E., Johnsen A., and Fonnum F. (1992) Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res.576, 120–124. PubMedCAS Google Scholar
Hassel B., Sonnewald U., and Fonnum F. (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose. An ex vivo 13C NMR spectroscopic study. J. Neurochem.64, 2773–2782. ArticlePubMedCAS Google Scholar
Berl S., Takagaki G., Clarke D. D., and Waelsch H. (1962) Metabolic compartments in vivo. J. Biol. Chem.237, 2562–2569. PubMedCAS Google Scholar
Lee W. J., Hawkins R. A., Vina J. R., and Peterson D. R. (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am. J. Physiol.274, C1101-C1107. PubMedCAS Google Scholar
Grill V., Bjorkman O., Gutniak M., and Lindqvist M. (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release fornitrogen balance. Metabolism41, 28–32. PubMedCAS Google Scholar
Bradford H. F., Ward H. K., and Thomas A. J. (1978) Glutamine: a major substrate for nerve endings. J. Neurochem.30, 1453–1460. PubMedCAS Google Scholar
Zielke H. R., Collins R. M., Jr., Baab P. J., Huang Y., Zielke C. L., and Tildon J. T. (1998) Compartmentation of [14C]glutamate and [14C]glutamine oxidative metabolism in the rat hippocampus as determined by microdialysis. J. Neurochem.71, 1315–1320. ArticlePubMedCAS Google Scholar
Cotman C. W. and Hamberger A. C. (1978) Glutamate as a CNS neurotransmitter: properties of release, inactivation and biosynthesis, in Amino Acids as Chemical Transmitters (Fonnum F., ed.), Plenum Press, New York, pp. 379–412. Google Scholar
Hamberger A. C., Chiang G. H., Nylén E. S., Scheff S. W., and Cotman C. W. (1979) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of the preferentially released glutamate. Brain Res.168, 513–530. PubMedCAS Google Scholar
Tapia R. and Gonzalez M. (1978) Glutamine and glutamate as precursors of the releasable pool of GABA in brain cortex slices. Neurosci. Lett.10, 165–169. CASPubMed Google Scholar
Hassel B., Bachelard H. S., Jones P., Fonnum F., and Sonnewald U. (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial meabolism by fluoroacetate. J. Cereb. Blood Flow Metab.17, 1230–1238. PubMedCAS Google Scholar
Sonnewald U., Westergaard N., Krane J., Unsgard G., Petersen S. B., and Schousboe A. (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci. Lett.128, 235–239. PubMedCAS Google Scholar
Westergaard N., Sonnewald U., Unsgard G., Peng L., Hertz L., and Schousboe A. (1994) Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures. J. Neurochem.62, 1727–1733. ArticlePubMedCAS Google Scholar
Hassel B., Westergaard N., Schousboe A., and Fonnum F. (1995) Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem. Res.20, 413–420. PubMedCAS Google Scholar
Gatfield P. D., Lowry O. H., Schulz D. W., and Passonneau J. V. (1996) Regional energy reserves in mouse brain and changes with ischaemia and anaesthesia. J. Neurochem.13, 185–195. Google Scholar
Martinez-Hernandez A., Bell K. P., and Norenberg M. D. (1977) Glutamine synthetase: glial localization in brain. Science195, 1356–1358. PubMedCAS Google Scholar
Tansey F. A., Farooq M., and Cammer W. (1991) Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J. Neurochem.56, 266–272. PubMedCAS Google Scholar
Sonnewald U., Westergaard N., Petersen S. B., Unsgard G., and Schousboe A. (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMRspectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J. Neurochem.61, 1179–1182. PubMedCAS Google Scholar
McKenna M. C., Sonnewald U., Huang X., Stevenson J., and Zielke H. R. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem.66, 386–393. Article Google Scholar
Hertz L. (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol.13, 277–323. PubMedCAS Google Scholar
Thanki C. M., Sugden D., Thomas N. J., and Bradford H. F. (1983) In vivo release from cerebral cortex of [14C]glutamate synthesized from [U-14C]glutamine. J. Neurochem.41, 611–617. PubMedCAS Google Scholar
Fonnum F. (1991) Neurochemical studies on glutamate-mediated neurotransmission, in Excitatory Amino Acids, FIDIA Research Foundation Symposium Series, vol. 5 (Meldrum B. S., Moroni F., Simon R. P., and Woods J. H., eds.), Raven Press, New York, pp. 15–25. Google Scholar
Najlerahim A., Harrison P. J., Barton A. J., Heffernan J., and Pearson R. C. (1990) Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Brain Res. Mol. Brain Res.7, 317–333. PubMedCAS Google Scholar
Kaneko T. and Mizuno N. (1994) Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience61, 839–849. PubMedCAS Google Scholar
Ottersen O. P., Takumi Y., Matsubara A., Landsend A. S., Laake J. H. and Usami S. (1998) Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog. Neurobiol.54, 127–148. PubMedCAS Google Scholar
Laake J. H., Takumi Y., Eidet J., Torgner I. A., Roberg B., Kvamme E., and Ottersen O. P. (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience88, 1137–1151. PubMedCAS Google Scholar
Van den Berg C. J. (1973) A model of compartmentataion in mouse brain based on glucose and acetate metabolism, in Metabolic Compartmentation in the Brain (Balazs R. and Cremer J. E., eds.), MacMillan, London, pp. 137–166. Google Scholar
Nicklas W. J. and Clarke D. D. (1969) Decarboxylation studies of glutamate, glutamine, and aspartate from brain labelled with [1-14C]acetate, L-[U-14C]-aspartate, and L-[U-14C]glutamate. J. Neurochem.16, 549–558. PubMedCAS Google Scholar
Clarke D. D. and Berl S. (1973) Alteration in the expression of compartmentation: in vitro studies, in Metabolic Compartmentation in the Brain (Balazs R., and Cremer J. E., eds.), MacMillan, London, pp. 97–106. Google Scholar
Hassel B. and Sonnewald U. (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates. Implications for the inactivation of transmitter amino acids? J. Neurochem.65, 2227–2234. ArticlePubMedCAS Google Scholar
Cerdan S., Kunnecke B., and Seelig J. (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J. Biol. Chem.265, 12,916–12,926. CAS Google Scholar
O’Neal R. M. and Koeppe R. E. (1966) Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J. Neurochem.13, 835–847. PubMedCAS Google Scholar
Bakken I. J., Sonnewald U., Clark J. B., and Bates T. E. (1997) [U-13C]glutamate metabolism in rat brain mitochondria reveals malic enzyme activity. Neuroreport8, 1567–1570. PubMedCAS Google Scholar
Bakken I. J., White L. R., Aasly J., Unsgard G., and Sonnewald U. (1997) Lactate formation from [U-13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci. Lett.237, 117–120. PubMedCAS Google Scholar
Bouzier A. K., Thiaudiere E., Biran M., Rouland R., Canioni P., and Merle M. (2000) The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J. Neurochem.75, 480–486. PubMedCAS Google Scholar
Merle M., Martin M., Villegier A., and Canioni P. (1996) [1-13C]glucose metabolism in brain cells: isotopomer analysis of glutamine from cerebellar astroyctes and glutamate from granule cells. Dev. Neurosci.18, 460–468. Google Scholar
Shank R. P., Leo G. C., and Zielke H. R. (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J. Neurochem.61, 315–323. PubMedCAS Google Scholar
Lapidot A. and Gopher A. (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J. Biol. Chem.269, 27,198–27,208. CAS Google Scholar
Aureli T., Di Cocco M. E., Calvani M., and Conti F. (1997) The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res.765, 218–227. PubMedCAS Google Scholar
Waniewski R. A. and Martin D. L. (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci.18, 5225–5233. PubMedCAS Google Scholar
Cheng S.-C., Naruse H., and Brunner E. A. (1978) Effects of sodium thiopental on the tricarboxylic acid cycle metabolism in mouse brain: CO2 fixation and metabolic compartmentation. J. Neurochem.30, 1591–1593. PubMedCAS Google Scholar
Berl S., Takagaki G., Clark D. D., and Waelsch H. (1962) Carbon dioxide fixation in the brain. J. Biol. Chem.237, 2570–2573. PubMedCAS Google Scholar
Hassel B., Johannessen C. U., Sonnewald U., and Fonnum F. (1998) Quantification of the GABA shunt and the importance of the GABA shunt versus the 2-oxoglutarate dehydrogenase pathway in GABAergic neurons. J. Neurochem.71, 1511–1518. ArticlePubMedCAS Google Scholar
Mason G. F., Rothman D. L., Behar K. L., and Shulman R. G. (1992) NMR determination of the TCA cycle rate and alpha-2ketoglutarate/glutamate exchange rate in rat brain. J. Cereb. Blood Flow Metab.12, 434–447. PubMedCAS Google Scholar
Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G., and Novotny E. J. (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J. Cereb. Blood Flow Metab.15, 12–25. PubMedCAS Google Scholar
Fitzpatrick S. M., Hetherington H. P., Behar K. L., and Shulman R. G. (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J. Cereb. Blood Flow Metab.10, 170–179. PubMedCAS Google Scholar
Miller A. K., Alston R. L., and Corsellis J. A. (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol. Appl. Neurobiol.6, 119–132. ArticlePubMedCAS Google Scholar
Robins E., Smith D. E., Eydt K. M., and McCaman R. E. (1956) The quantitative histochemistry of the cerebral cortex-II. Architectonic distribution of nine enzymes in the motor and visual cortices. J. Neurochem.1, 68–76. PubMedCAS Google Scholar
Mason G. F., Pan J. W., Chu W. J., Newcomer B. R., Zhang Y., Orr R., and Hetherington H. P. (1999) Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by H-[13C] magnetic resonance spectroscopy at 4.1 T. J. Cereb. Blood Flow Metab.19, 1179–1188. PubMedCAS Google Scholar
Pardridge W. M. (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev.63, 1481–1535. PubMedCAS Google Scholar
Westergaard N., Varming T., Peng L., Sonnewald U., Hertz L., and Schousboe A. (1993) Uptake, release, and metabolism of alanine in neurons and astrocytes in primary cultures. J. Neurosci. Res.35, 540–545. PubMedCAS Google Scholar
Erecinska M., Nelson D., Nissim I., Daikhin Y., and Yudkoff M. (1994) Cerebral alanine transport and alanine aminotransferase reaction: alanine as a source of neuronal glutamate. J. Neurochem.62, 1953–1964. ArticlePubMedCAS Google Scholar
Hutson S. M., Berkich D., Drown P., Xu B., Aschner M., and LaNoue K. F. (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J. Neurochem.71, 863–874. ArticlePubMedCAS Google Scholar
McKenna M. C., Stevenson J. H., Huang X., and Hopkins I. B. (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem. Int.37, 229–241. PubMedCAS Google Scholar