Stress and the developing hippocampus (original) (raw)
Aamodt S. M. and Constantine-Paton M. (1999) The role of neural activity in synaptic development and its implications for adult brain function. Adv. Neurol.79, 133–144. PubMedCAS Google Scholar
Rubenstein J. L. R. and Rakic P. (1999) Genetic control of cortical development. Cereb. Cortex9, 521–523. PubMedCAS Google Scholar
Monuki E. S. and Walsh C. A. (2001) Mechanisms of cerebral cortical patterning in mice and humans. Nat. Neurosci. Suppl.4, 1199–1206. CAS Google Scholar
Roozendaal B., Quirarte G. L., and McGaugh J. L. (1997) Stress-activated hormonal systems and the regulation of memory storage. Ann. NY Acad. Sci.821, 247–258. PubMedCAS Google Scholar
Schafe G. E., Nader K., and Blair H. T. (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci.24, 540–546. PubMedCAS Google Scholar
Altman J. and Bayer S. A. (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol.301, 365–381. PubMedCAS Google Scholar
Cameron H. A. and Gould E. (1996) The control of neuronal birth and survival, in Receptor Dynamics in Neural Development (Shaw C. A., ed.), CRC Press, New York, NY, pp. 141–157. Google Scholar
Bender R. A., Lauterborn J. C., Gall C. M., Cariaga W., and Baram T. Z. (2001) Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation. Eur. J. Neurosci.13, 679–686. PubMedCAS Google Scholar
Amaral D. G. and Dent J. A. (1981) Development of mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansion. J. Comp. Neurol.195, 51–86. PubMedCAS Google Scholar
Ribak C. E. and Navetta M. S. (1994) An immature mossy fiber innervation of hilar neurons may explain their resistance to kainate-induced cell death in 15-day-old rats. Dev. Brain Res.79, 47–62. CAS Google Scholar
Tamamaki N. (1999) Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus. J. Comp. Neurol.411, 257–266. PubMedCAS Google Scholar
Swann J. W., Smith K. L., and Lee C. L. (2001) Neuronal activity and the establishment of normal and epileptic circuits during brain development. Int. Rev. Neurobiol.45, 89–118. PubMedCAS Google Scholar
Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., et al. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science277, 1659–1662. PubMedCAS Google Scholar
Sanchez M. M., Hearn E. F., Do D., Rilling J. K., and Herndon J. G. (1998) Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res.812, 38–49. PubMedCAS Google Scholar
Kempermann G., Kuhn H. G., and Gage F. H. (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature386, 493–495. PubMedCAS Google Scholar
Williams B. M., Luo Y., Ward C., Redd K., Gibson R., Kuczaj S. A., et al. (2001) Environmental enrichment: effects on spatial memory and hippocampal CREB immunoreactivity. Physiol. Behav.73, 649–658. PubMedCAS Google Scholar
Trickett P. K. and McBride-Chang C. (1995) The developmental impact of different forms of child abuse and neglect. Dev. Rev.15, 311–337. Google Scholar
Bremner J. D., Randall P., Vermetten E., Staib L., Bronen R. A., Mazure C., et al. (1997) Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol. Psychiatry41, 23–32. PubMedCAS Google Scholar
Stein M. B., Koverola C., Hanna C., Torchia M. G., and McClarty B. (1997) Hippocampal volume in women victimized by childhood sexual abuse. Psychol. Med.27, 951–959. PubMedCAS Google Scholar
Sanchez M. M., Ladd C. O., and Plotsky P. M. (2001) Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Dev. and Psychopathol.13, 419–449. CAS Google Scholar
Flagel S. B., Vazquez D. M., Watson S. J. Jr., and Neal C. R. Jr. (2002) Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am. J. Physiol. Regul. Integr. Comp. Physiol.282, 55–63. Google Scholar
Uno H., Eisele S., Sakai A., Shelton S., Baker E., DeJesus O., et al. (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm. Behav.28, 336–348. PubMedCAS Google Scholar
Brunson K. L., Eghbal-Ahmadi M., Bender R., Chen Y., and Baram T. Z. (2001) Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc. Natl. Acad. Sci. USA98, 8856–8861. PubMedCAS Google Scholar
Meaney M. J., Aitken D. H., Van Berkel C., Bhatnagar S., and Sapolsky R. M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science239, 766–768. PubMedCAS Google Scholar
Keller-Wood M. and Dallman M. (1984) Corticosteroid inhibition of ACTH secretion. Endocr. Rev.5, 1–24. PubMedCAS Google Scholar
Sawchenko P. E. (1987) Evidence for a local site of action for glucocorticoids in inhibiting CRF and vasopressin expression in parvocellular neurosecretory neurons. Brain Res.403, 213–224. PubMedCAS Google Scholar
de Kloet E. R., De Kock S., Schild V., and Veldhuis H. D. (1988) Antiglucocorticoid RU 38486 attenuates retention of a behavior and disinhibits the hypothalamic-pituitary-adrenal axis at different sites. Neuroendocrinol.47, 109–115. Google Scholar
Baram T. Z., Chalmers D. T., Chen C., Koutsoukos Y., and De Souza E. B. (1997) The CRF1 receptor mediates the excitatory actions of corticotropin releasing factor (CRF) in the developing rat brain: in vivo evidence using a novel, selective, non-peptide CRF receptor antagonist. Brain Res.770, 89–95. PubMedCAS Google Scholar
Herman J. P. and Cullinan W. E. (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci.20, 78–84. PubMedCAS Google Scholar
Lopez J. F., Akil H., and Watson S. J. (1999) Neural circuits mediating stress. Biol. Psychiatry46, 1461–1471. PubMedCAS Google Scholar
Baram T. Z. and Hatalski C. G. (1998) Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci.21, 471–476. PubMedCAS Google Scholar
Chen Y., Hatalski C. G., Brunson K. L., Baram T. Z. (2002) Rapid phosphorylation of the CRE binding protein precedes stress-induced activation of the corticotropin releasing hormone gene in medial parvocellular hypothalamic neurons of the immature rat. Mol. Brain Res.96, 39–49. Google Scholar
Imaki T., Shibasaki T., Hotta M., and Demura H. (1993) Intracerebroventricular administration of corticotropin-releasing factor induces c-fos mRNA expression in brain regions related to stress responses: comparison with pattern of c-fos mRNA induction after stress. Brain Res.616, 114–125. PubMedCAS Google Scholar
McGaugh J. L., Cahill L., and Roozendaal B. (1996) Involvement of the amygdala in memory storage: interaction with other brain systems. Proc. Natl. Acad. Sci. USA93, 13,508–13,514. CAS Google Scholar
Hatalski C. G., Guirguis C., and Baram T. Z. (1998) Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated stress in the immature rat. J. Neuroendocrinol.10, 663–669. PubMedCAS Google Scholar
Hatalski C. G., Brunson K. L., Tantayanubutr B., Chen Y., and Baram T. Z. (2000) Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin releasing hormone expression in the immature rat. Neuroscience101, 571–580. PubMedCAS Google Scholar
Tannahill L. A., Sheward W. J., Robinson I. C., and Fink G. (1991). Corticotropin-releasing factor-41, vasopressin and oxytocin release into hypophysial portal blood in the rat: effects of electrical stimulation of the hypothalamus, amygdala and hippocampus. J. Endocrinol.129, 99–107. ArticlePubMedCAS Google Scholar
Beaulieu S., Pelletier G., Vaudry H., and Barden N. (1989) Influence of the central nucleus of the amygdala on the content of corticotropin-releasing factor in the median eminence. Neuroendocrinology.49, 255–261. PubMedCAS Google Scholar
Cullinan W. E., Helmreich D. L., and Watson S. J. (1996) Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J. Comp. Neurol.368, 88–99. PubMedCAS Google Scholar
Roozendaal B. and McGaugh J. L. (1997) Basolateral amygdala lesions block the memory enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur. J. Neurosci.9, 76–83. PubMedCAS Google Scholar
Garcia R., Tocco G., Baudry M., and Thompson R. F. (1998) Exposure to a conditioned aversive environment interferes with long-term potentiation induction in the fimbria-CA3 pathway. Neuroscience82, 139–145. PubMedCAS Google Scholar
Blank T., Nijholt I., Eckart K., and Spiess J. (2002) Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J. Neurosci.22, 3788–3794. PubMedCAS Google Scholar
De Souza E. B., Insel T. R., Perrin M. H., Rivier J., Vale W. W., and Kuhar M. J. (1985) Corticotropin-releasing factor receptors are widely distributed within the rat CNS: an autoradiographic study. J. Neurosci.5, 3189–3203. PubMed Google Scholar
Gray T. S. and Bingaman E. W. (1996) The amygdala: corticotropin-releasing factor, steroids, and stress. Crit. Rev. Neurobiol.10, 155–168. PubMedCAS Google Scholar
Eghbal-Ahmadi M., Hatalski C. G., Lovenberg T. W., Avishai-Eliner S. A., Chalmers D. T., and Baram T. Z. (1998) The developmental profile of the corticotropin releasing hormone receptor (CRF2) in rat brain predicts distinct agespecific functions. Dev. Brain Res.107, 81–90. CAS Google Scholar
Chen Y., Brunson K., Cariaga W., and Baram T. Z. (2000) Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 analysis using an antibody directed against the C-terminus. J. Comp. Neurol.420, 305–323. PubMedCAS Google Scholar
Avishai-Eliner S. A., Yi S. J., and Baram T. Z. (1996) Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the limbic system. Dev. Brain Res.91, 159–163. CAS Google Scholar
Kalin N. H., Takahashi L. K., and Chen F-L (1994) Restraint stress increases corticotropin-releasing hormone mRNA content in the amygdala and paraventricular nucleus. Brain Res.656, 182–186. PubMedCAS Google Scholar
Merali Z., McIntosh J., Kent P., Michaud D., and Anisman H. (1998) Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J. Neurosci.18, 4758–4766. PubMedCAS Google Scholar
Swiergel A. H., Takahashi L. K., and Kalin N. H. (1993) Attenuation of stress-induced behavior by antagonism of corticotropin-releasing factor receptors in the central amygdala in the rat. Brain Res.623, 229–234. Google Scholar
Roozendaal B., Brunson K. L., Holloway B. L., McGaugh J. L., Baram T. Z. (2002) Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc. Nat. Acad. Sci.99, 13,908–13,913. ArticleCAS Google Scholar
Piekut D. T. and Phipps B. (1998) Increased corticotropin-releasing factor immunoreactivity in select brain sites following kainate elicited seizures. Brain Res.781, 99–111. Google Scholar
Swanson L. W., Sawchenko P. E., Rivier J., and Vale W. W. (1983) Organization of ovine corticotropin releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology36, 165–186. PubMedCAS Google Scholar
Sakanaka M., Shibasaki T., and Lederis K. (1987) Corticotropin releasing factor-like immunoreactivity in the rat brain as revealed by a modified cobalt-glucose oxidase-diaminobenzadine method. J. Comp. Neurol.260, 256–298. PubMedCAS Google Scholar
Yan X. X., Toth Z., Schultz L., Ribak C. E., and Baram T. Z. (1998) Corticotropin releasing hormone (CRH)-containing neurons in the hippocampal formation: morphological and neurochemical characterization. Hippocampus8, 231–243. PubMedCAS Google Scholar
Chen Y., Bender R. A., Frotscher M., and Baram T. Z. (2001) Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J. Neurosci.21, 7171–7181. PubMedCAS Google Scholar
Chugani H. T., Behen M. E., Muzik O., Juhasz C., Nagy F., and Chugani D. C. (2001) Local brain functional activity following early deprivation: a study of postinstitutionalized Romanian orphans. Neuroimage14, 1290–1301. PubMedCAS Google Scholar
Vazquez D. M., Lopez J. F., Van Hoers H., Watson S. J., and Levine S. (2000) Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res.855, 76–82. PubMedCAS Google Scholar
Plotsky P. M. and Meaney M. J. (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol. Brain Res.18, 195–200. PubMedCAS Google Scholar
Avishai-Eliner S., Eghbal-Ahmadi M., Tabachnik E., Brunson K. L., and Baram T. Z. (2001) Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA. Endocrinology142, 89–97. PubMedCAS Google Scholar
Levine S. and Lewis G. (1959) Critical period for the effects of infantile experience on the maturation of a stress response. Science129, 42–43. PubMedCAS Google Scholar
Hess J. L., Denenberg V. H., Zarrow M., and Peiffer W. D. (1969) Modification of the corticosterone response curve as a function of handling in infancy. Physiol. Behav.4, 102–109. Google Scholar
Meaney M. J., Diorio J., Francis D., Widdowson J., LaPlante P., Caldji C., et al. (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev. Neurosci.18, 49–72. PubMedCAS Google Scholar
Francis D. D. and Meaney M. J. (1999) Maternal care and the development of stress responses. Curr. Opin. Neurobiol.9, 128–134. PubMedCAS Google Scholar
Eghbal-Ahmadi M., Avisai-Eliner S., Hatalski C. G., and Baram T. Z. (1999) Regulation of the expression of corticotropin releasing factor receptor type 2 (CRF2) in the hypothalamus and amygdala of the immature rat. J. Neurosci.19, 3982–3991. PubMedCAS Google Scholar
Lopez J. F., Liberzon I., Vazquez D. M., Young E. A., and Watson S. J. (1999) Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biol. Psychiatry45, 934–937. PubMedCAS Google Scholar
Czeh B., Michaelis T., Watanabe T., Frahm J., de Biurrun G., van Kampen M., et al. (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl. Acad. Sci. USA98, 12,796–12,801. CAS Google Scholar
Viau V., Sharma S., Plotsky P. M., and Meaney M. J. (1993) The hypothalamic-pituitary-adrenal response to stress in handled and nonhandled rats: differences in stress-induced plasma ACTH secretion are not dependent upon increased corticosterone levels. J. Neurosci.13, 1097–1105. PubMedCAS Google Scholar
Meaney M. J. and Aitken D. H. (1985) The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: temporal parameters. Brain Res.354, 301–304. PubMedCAS Google Scholar
Herman J. P., Patel P. D., Akil H., and Watson S. J. (1997) Localization and regulation of glucocorticoid and mineralcorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol. Endocrinol.3, 3072–3082. Google Scholar
Joels M. and de Kloet E. R. (1992) Control of neuronal excitability by corticosteroid hormones. Trends Neurosci.15, 25–30. PubMedCAS Google Scholar
Pavlides C., Watanabe Y., Magarinos A. M., and McEwen B. S. (1995) Opposing roles of type I and type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience68, 387–394. PubMedCAS Google Scholar
Joels M. (2001) Corticosteroid actions in the hippocampus. J. Neuroendocrinol.13, 657–669. PubMedCAS Google Scholar
Hollrigel G. S., Chen K., Baram T. Z., and Soltesz I. (1998) The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience84, 71–79. PubMedCAS Google Scholar
Aldenhoff J. B., Gruol D. L., Rivier J., Vale W., and Siggins G. R. (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science221, 875–877. PubMedCAS Google Scholar
Lee E. H., Hung H. C., Lu K. T., Chen W. H., and Chen H. Y. (1992) Protein synthesis in the hippocampus associated with memory facilitation by corticotropin-releasing factor in rats. Peptides13, 927–937. PubMedCAS Google Scholar
Behan D. P., Heinrichs S. C., Troncoso J. C., Liu X. J., Kawas C. H., Ling N., et al. (1995) Displacement of CRF from its binding protein as a possible treatment for Alzheimer’s disease. Nature378, 284–287. PubMedCAS Google Scholar
Lee E. H., Huang A. M., Tsuei K. S., and Lee W. Y. (1996) Enhanced hippocampal corticotropin-releasing factor gene expression associated with memory consolidation and memory storage in rats. Chin. J. Physiol.39, 197–203. PubMedCAS Google Scholar
Chalmers D. T., Lovenberg T. W., and De Souza E. B. (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci.15, 6340–6350. PubMedCAS Google Scholar
Hatalski C. G. and Baram T. Z. (1997) Stress-induced transcriptional regulation in the developing rat brain involves increased cyclic adenosine 3′, 5′-monophosphate-regulatory element binding activity. Mol. Endocrinol.11, 2016–2024. PubMedCAS Google Scholar
Avishai-Eliner S., Brunson K. L., Sandman C. A., and Baram T. Z. (2002) Stressed-out, or in (utero)? Trends Neurosci25, 518–524. PubMedCAS Google Scholar
Chen Y, Bender R. A. Mews K., Adelmann G., Frotscher M., and Baram T. Z. (2002) The hippocampal CRH synpase: mismatched pre- and postsynaptic elements. Soc. Neurosci. Abs. 867.9.
Smith B. N. and Dudek F. E. (1994) Agerelated epileptogenic effects of corticotropin-releasing hormone in the isolated CA1 region of rat hippocampal slices. J. Neurophysiol.72, 2328–2333. PubMedCAS Google Scholar
Baram T. Z., Hirsch E., Snead O. C., and Schultz L. (1992) Corticotropin-releasing hormone-induced seizures in infant rats originate in the amygdala. Ann. Neurol.31, 488–494. PubMedCAS Google Scholar
Ehlers C. L., Henriksen S. J., Wang M., Rivier J., Vale W., and Bloom F. E. (1983) Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Res.278, 332–336. PubMedCAS Google Scholar
Marrosu F., Fratta W., Carrangiu P., Giagheddu M., and Gessa G. L. (1988) Localized epileptiform activity induced by murine CRF in rats. Epilepsia29, 369–373. PubMedCAS Google Scholar
Baram T. Z. and Ribak C. E. (1995) Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. Neuroreport6, 277–280. PubMedCAS Google Scholar
Sperber E. F., Haas K. Z., Stanton P. K., and Moshe S. L. (1991) Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Dev. Brain Res.60, 88–93. CAS Google Scholar
Haas K. Z., Sperber E. F., Opanashuk L. A., Stanton P. K., and Moshe S. L. (2001) Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus11, 615–625. PubMedCAS Google Scholar
Pihoker C., Cain S. T., and Nemeroff C. B. (1992) Postnatal development of regional binding of corticotropin-releasing factor and adenylate cyclase activity in the rat brain. Prog. Neuro-Psychopharmacol. Biol. Psychiatry16, 581–586. CAS Google Scholar
Brunson K. L., Schultz L., and Baram T. Z. (1998) The in vivo proconvulsant effects of corticotropin releasing hormone in the developing rat are independent of ionotropic glutamate receptor activation. Dev. Brain Res.111, 119–128. CAS Google Scholar
Lyons M. K., Anderson R. E., and Meyer F. B. (1991) Corticotropin releasing factor antagonist reduces ischemic hippocampal neuronal injury. Brain Res.545, 339–342. PubMedCAS Google Scholar
Strijbos P. J., Relton J. K., and Rothwell N. J. (1994) Corticotropin-releasing factor antagonist inhibits neuronal damage induced by focal cerebral ischemia or activation of NMDA receptors in the rat brain. Brain Res.656, 405–408. PubMedCAS Google Scholar
Maecker H., Desai A., Dash R., Rivier J., Vale W., and Sapolsky R. (1997) Astressin, a novel and potent CRF antagonist, is neuroprotective in the hippocampus when administered after a seizure. Brain Res.744, 166–170. PubMedCAS Google Scholar
Pederson W. A., Wan R., Zhang P., and Mattson M. P. (2002) Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J. Neurosci.22, 404–412. Google Scholar
Sapolsky R. M., Krey L. C., and McEwen B. S. (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J. Neurosci.5, 1222–1227. PubMedCAS Google Scholar
Reul J. M. and de Kloet E. R. (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology117, 2505–2511. ArticlePubMedCAS Google Scholar
McEwen B. S. (1999) Stress and hippocampal plasticity. Annu. Rev. Neurosci.22, 105–122. PubMedCAS Google Scholar
Leverenz J. B., Wilkinson C. W., Wamble M., Corbin S., Grabber J. E., Raskind M. A., et al. (1999) Effect of chronic high-dose exogenous cortisol on hippocampal neuronal number in aged nonhuman primates. J. Neurosci.19, 2356–2361. PubMedCAS Google Scholar
Shetty A. K. and Turner D. A. (1997) Fetal hippocampal cells grafted to kainate-lesioned CA3 region of adult hippocampus suppress aberrant supragranular sprouting of host mossy fibers. Exp. Neurol.143, 231–145. PubMedCAS Google Scholar
Sapolsky R. M. (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress1, 1–19. PubMedCAS Google Scholar
Dubé C., Brunson K. L., Nehlig A., and Baram T. Z. (2000) Corticotropin releasing hormone activates specific neuronal circuits, as indicated by c-fos expression and glucose metabolism. J. Cereb. Blood Flow Metab.20, 1414–1424. PubMed Google Scholar
Riviello P., de Rogalski Landrot I., and Holmes G. L. (2002) Lack of cell loss following recurrent neonatal seizures. Dev. Brain Res.135, 101–104. CAS Google Scholar