Oxidative imbalance in alzheimer’s disease (original) (raw)
Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem.59, 1609–1623. ArticlePubMedCAS Google Scholar
Joseph J., Shukitt-Hale B., Denisova N.A., et al. (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol. Aging22, 131–146. ArticlePubMedCAS Google Scholar
Hirai K., Aliev G., Nunomura A., et al. (2001) Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci.21, 3017–3023. PubMedCAS Google Scholar
Zhu X., Raina A.K., Perry G., and Smith M.A. (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol.3, 219–226. ArticlePubMedCAS Google Scholar
Smith M.A., Rottkamp C.A., Nunomura A., et al. (2000) Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta1502, 139–144. PubMedCAS Google Scholar
Good P.F., Werner P., Hsu A., et al. (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol.149, 21–28. PubMedCAS Google Scholar
Smith M.A., Richey Harris P.L., Sayre L.M., et al. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci.17, 2653–2657. PubMedCAS Google Scholar
Smith M.A., Perry G., Richey P.L., et al. (1996) Oxidative damage in Alzheimer’s. Nature382, 120–121. ArticlePubMedCAS Google Scholar
Castegna A., Thongboonkerd V., Klein J.B., et al. (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem.85, 1394–1401. ArticlePubMedCAS Google Scholar
Williamson K.S., Gabbita S.P., Mou S., et al. (2002) The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide6, 221–227. ArticlePubMedCAS Google Scholar
Sayre L.M., Smith M.A., and Perry G. (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem.8, 721–738. PubMedCAS Google Scholar
Smith M.A., Sayre L.M., Anderson V.E., et al. (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem.46, 731–735. PubMedCAS Google Scholar
Montine T.J., Amarnath V., Martin M.E., et al. (1996) E-4-Hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am. J. Pathol.148, 89–93. PubMedCAS Google Scholar
Sayre L.M., Zelasko D.A., Harris P.L., et al. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem.68, 2092–2097. ArticlePubMedCAS Google Scholar
Nunomura A., Perry G., Pappolla M.A., et al. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci.19, 1959–1964. PubMedCAS Google Scholar
Rottkamp C.A., Nunomura A., Raina A.K., et al. (2000) Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis. Assoc. Disord.14(Suppl. 1), S62-S66. PubMedCAS Google Scholar
Rinaldi P., Polidori M.C., Metastasio A., et al. (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol. Aging24, 915–919. ArticlePubMedCAS Google Scholar
Riviere S., Birlouez-Aragon I., Nourhashemi F., and Vellas B. (1998) Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int. J. Geriatr. Psychiatry13, 749–754. ArticlePubMedCAS Google Scholar
Bourdel-Marchasson I., Delmas-Beauvieux M.C., Peuchant E., et al. (2001) Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing30, 235–241. ArticlePubMedCAS Google Scholar
Lovell M.A., Xie C., and Markesbery W.R. (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology51, 1562–1566. PubMedCAS Google Scholar
Riviere S., Birlouez-Aragon I., and Vellas B. (1998) Plasma protein glycation in Alzheimer’s disease. Glycoconj. J.15, 1039–1042. ArticlePubMedCAS Google Scholar
Pratico D. (2002) Alzheimer’s disease and oxygen radicals: new insights. Biochem. Pharmacol.63, 563–567. ArticlePubMedCAS Google Scholar
Markesbery W.R. and Carney J.M. (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol.9, 133–146. ArticlePubMedCAS Google Scholar
Markesbery W.R. and Lovell M.A. (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging19, 33–36. ArticlePubMedCAS Google Scholar
Pratico D., Trojanowski J.Q., Rokach J., et al. (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J.12, 1777–1783. PubMedCAS Google Scholar
Montine T.J., Beal M.F., Cudkowicz M.E., et al. (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology52, 562–565. PubMedCAS Google Scholar
Montine T.J., Sidell K.R., Crews B.C., et al. (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology53, 1495–1498. PubMedCAS Google Scholar
Montine T.J., Markesbery W.R., Zackert W., et al. (1999) The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. Am. J. Pathol.155, 863–868. PubMedCAS Google Scholar
Pratico D., Clark C.M., Lee V.M., et al. (2000) Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol.48, 809–812. ArticlePubMedCAS Google Scholar
Tuppo E.E., Forman L.J., Spur B.W., et al. (2001) Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Res. Bull.54, 565–568. ArticlePubMedCAS Google Scholar
Pratico D., Clark C.M., Liun F., et al. (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch. Neurol.59, 972–976. ArticlePubMed Google Scholar
Lovell M.A., Gabbita S.P., and Markesbery W.R. (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem.72, 771–776. ArticlePubMedCAS Google Scholar
Tohgi H., Abe T., Yamazaki K., et al. (1998) The cerebrospinal fluid oxidized NO metabolites, nitrite and nitrate, in Alzheimer’s disease and vascular dementia of Binswanger type and multiple small infarct type. J. Neural Transm.105, 1283–1291. ArticlePubMedCAS Google Scholar
Tohgi H., Abe T., Yamazaki K., et al. (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci. Lett.269, 52–54. ArticlePubMedCAS Google Scholar
Perry G., Castellani R.J., Smith M.A., et al. (2003) Oxidative damage in the olfactory system in Alzheimer’s disease. Acta Neuropathol. (Berl.)106, 552–556. ArticleCAS Google Scholar
Mecocci P., Polidori M.C., Ingegni T., et al. (1998) Oxidative damage to DNA in lymphocytes from AD patients. Neurology51, 1014–1017. PubMedCAS Google Scholar
Mecocci P., Polidori M.C., Cherubini A., et al. (2002) Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch. Neurol.59, 794–798. ArticlePubMed Google Scholar
Gibson G.E., Pulsinelli W., Blass J.P., and Duffy T.E. (1981) Brain dysfunction in mild to moderate hypoxia. Am. J. Med.70, 1247–1254. ArticlePubMedCAS Google Scholar
Blass J.P. and Gibson G.E. (1999) Cerebrometabolic aspects of delirium in relationship to dementia. Dement. Geriatr. Cogn. Disord.10, 335–338. ArticlePubMedCAS Google Scholar
Small G.W., Mazziotta J.C., Collins M.T., et al. (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA273, 942–947. ArticlePubMedCAS Google Scholar
Reiman E.M., Caselli R.J., Yun L.S., et al. (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N. Engl. J. Med.334, 752–758. ArticlePubMedCAS Google Scholar
Ibanez V., Pietrini P., Alexander G.E., et al. (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology50, 1585–1593. PubMedCAS Google Scholar
Gibson G.E., Sheu K.F., and Blass J.P. (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J. Neural Transm.105, 855–870. ArticlePubMedCAS Google Scholar
Chandrasekaran K., Giordano T., Brady D.R., et al. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res. Mol. Brain Res.24, 336–340. ArticlePubMedCAS Google Scholar
Cottrell D.A., Blakely E.L., Johnson M.A., et al. (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology57, 260–264. PubMedCAS Google Scholar
Maurer I., Zierz S., and Moller H.J. (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging21, 455–462. ArticlePubMedCAS Google Scholar
Nagy Z., Esiri M.M., LeGris M., and Matthews P.M. (1999) Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol. (Berl.)97, 346–354. ArticleCAS Google Scholar
Parker W.D., Jr., Mahr N.J., Filley C.M., et al. (1994) Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology44, 1086–1090. PubMed Google Scholar
Parker W.D., Jr., Parks J., Filley C.M., and Kleinschmidt-DeMasters B.K. (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology44, 1090–1096. PubMed Google Scholar
Gibson G.E., Haroutunian V., Zhang H., et al. (2000) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann. Neurol.48, 297–303. ArticlePubMedCAS Google Scholar
Lovell M.A., Ehmann W.D., Butler S.M., and Markesbery W.R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology45, 1594–1601. PubMedCAS Google Scholar
Kulkarni-Narla A., Getchell T.V., Schmitt F.A., and Getchell M.L. (1996) Manganese and copper-zinc superoxide dismutases in the human olfactory mucosa: increased immunoreactivity in Alzheimer’s disease. Exp. Neurol.140, 115–125. ArticlePubMedCAS Google Scholar
De Leo M.E., Borrello S., Passantino M., et al. (1998) Oxidative stress and overexpression of managanese superoxide dismutase in patients with Alzheimer’s disease. Neurosci. Lett.250, 173–176. ArticlePubMed Google Scholar
Ozcankaya R. and Delibas N. (2002) Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: cross-sectional study. Croat. Med. J.43, 28–32. PubMed Google Scholar
Aksenov M.Y., Tucker H.M., Nair P., et al. (1998) The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease. J. Mol. Neurosci.11, 151–164. ArticlePubMedCAS Google Scholar
Serra J.A., Dominguez R.O., de Lustig E.S., et al. (2001) Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J. Neural Transm.108, 1135–1148. ArticlePubMedCAS Google Scholar
Gulesserian T., Seidl R., Hardmeier R., et al. (2001) Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J. Invest. Med.49, 41–46. CAS Google Scholar
Behl C. (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res.290, 471–480. ArticlePubMedCAS Google Scholar
Markesbery W.R. (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol. Med.23, 134–147. ArticleCAS Google Scholar
Gsell W., Conrad R., Hickethier M., et al. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J. Neurochem.64, 1216–1223. ArticlePubMedCAS Google Scholar
Takahashi M., Dore S., Ferris C.D., et al. (2000) Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron28, 461–473. ArticlePubMedCAS Google Scholar
Behl C., Davis J.B., Lesley R., and Schubert D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell77, 817–827. ArticlePubMedCAS Google Scholar
Samudralwar D.L., Diprete C.C., Ni B.F., et al. (1995) Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J. Neurol. Sci.130, 139–145. ArticlePubMedCAS Google Scholar
Smith M.A., Harris P.L., Sayre L.M., and Perry G. (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA94, 9866–9868. ArticlePubMedCAS Google Scholar
Deibel M.A., Ehmann W.D., and Markesbery W.R. (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J. Neurol. Sci.143, 137–142. ArticlePubMedCAS Google Scholar
Smith M.A., Wehr K., Harris P.L., et al. (1998) Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res.788, 232–236. ArticlePubMedCAS Google Scholar
Connor J.R., Snyder B.S., Arosio P., et al. (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J. Neurochem.65, 717–724. ArticlePubMedCAS Google Scholar
Loeffler D.A., Connor J.R., Juneau P.L., et al. (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J. Neurochem.65, 710–724. ArticlePubMedCAS Google Scholar
Kato J. and Niitsu Y. (2002) Recent advance in molecular iron metabolism: translational disorders of ferritin. Int. J. Hematol.76, 208–212. PubMedCAS Google Scholar
Pinero D.J., Hu J. and Connor J.R. (2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell. Mol. Biol. (Noisy-le-grand). 46, 761–776. CAS Google Scholar
Sayre L.M., Perry G., Harris P.L., et al. (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem.74, 270–279. ArticlePubMedCAS Google Scholar
Ding Q. and Keller J.N. (2003) Does proteasome inhibition play a role in mediating neuropathology and neuron death in Alzheimer’s disease? J. Alzheimer’s Dis.5, 241–245. CAS Google Scholar
Raina A.K., Zhu X., Rottkamp C.A., et al. (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res.61, 128–133. ArticlePubMedCAS Google Scholar
Zhu X., Raina A.K., and Smith M.A. (1999) Cell cycle events in neurons. Proliferation or death? Am. J. Pathol.155, 327–329. PubMedCAS Google Scholar
Nagy Z., Esiri M.M., Cato A.M., and Smith A.D. (1997) Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol. (Berl.)94, 6–15. ArticleCAS Google Scholar
Vincent I., Jicha G., Rosado M., and Dickson D.W. (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci.17, 3588–3598. PubMedCAS Google Scholar
Yang Y., Geldmacher D.S., and Herrup K. (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci.21, 2661–2668. PubMedCAS Google Scholar
Zhu X., McShea A., Harris P.L., et al. (2004) Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer’s disease. J. Neurosci. Res.75, 698–703. ArticlePubMedCAS Google Scholar
Barni S., Sciola L., Spano A., and Pippia P. (1996) Static cytofluorometry and fluorescence morphology of mitochondria and DNA in proliferating fibroblasts. Biotech. Histochem.71, 66–70. PubMedCAS Google Scholar
Bowser R. and Smith M.A. (2002) Cell cycle proteins in Alzheimer’s disease: plenty of wheels but no cycle. J. Alzheimer’s Dis.4, 249–254. CAS Google Scholar
Smith M.A., Richey P.L., Taneda S., et al. (1994) Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. NY Acad. Sci.738, 447–454. ArticlePubMedCAS Google Scholar
Smith M.A., Rudnicka-Nawrot M., Richey P.L., et al. (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J. Neurochem.64, 2660–2666. ArticlePubMedCAS Google Scholar
Smith M.A., Taneda S., Richey P.L., et al. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA91, 5710–5714. ArticlePubMedCAS Google Scholar
Vitek M.P., Bhattacharya K., Glendening J.M., et al. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA91, 4766–4770. ArticlePubMedCAS Google Scholar
Castellani R.J., Harris P.L., Sayre L.M., et al. (2001) Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radical Biol. Med.31, 175–180. ArticleCAS Google Scholar
Nunomura A., Perry G., Aliev G., et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol.60, 759–767. PubMedCAS Google Scholar
Nunomura A., Perry G., Pappolla M.A., et al. (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J. Neuropathol. Exp. Neurol.59, 1011–1017. PubMedCAS Google Scholar
Odetti P., Angelini G., Dapino D., et al. (1998) Early glycoxidation damage in brains from Down’s syndrome. Biochem. Biophys. Res. Commun.243, 849–851. ArticlePubMedCAS Google Scholar
Pratico D., Uryu K., Leight S., et al. (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci.21, 4183–4187. PubMedCAS Google Scholar
Smith M.A., Hirai K., Hsiao K., et al. (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem.70, 2212–2215. ArticlePubMedCAS Google Scholar
Olivieri G., Baysang G., Meier F., et al. (2001) _N_-acetyl-l-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on beta-amyloid secretion and τ phosphorylation. J. Neurochem.76, 224–233. ArticlePubMedCAS Google Scholar
Misonou H., Morishima-Kawashima M., and Ihara Y. (2000) Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry39, 6951–6959. ArticlePubMedCAS Google Scholar
Frederikse P.H., Garland D., Zigler J.S., Jr., and Piatigorsky J. (1996) Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J. Biol. Chem.271, 10,169–10,174. CAS Google Scholar
Tamagno E., Bardini P., Obbili A., et al. (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol. Dis.10, 279–288. ArticlePubMedCAS Google Scholar
Dyrks T., Dyrks E., Hartmann T., et al. (1992) Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem.267, 18,210–18,217. CAS Google Scholar
Atwood C.S., Moir R.D., Huang X., et al. (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem.273, 12,817–12,826. ArticleCAS Google Scholar
Ono K., Hasegawa K., Naiki H., and Yamada M. (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res.75, 742–750. ArticlePubMedCAS Google Scholar
Frautschy S.A., Hu W., Kim P., et al. (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol. Aging22, 993–1005. ArticlePubMedCAS Google Scholar
Pappolla M., Bozner P., Soto C., et al. (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem.273, 7185–7188. ArticlePubMedCAS Google Scholar
Hall E.D. and Braughler J.M. (1986) Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review. Central Nerv. Syst. Trauma3, 281–294. CAS Google Scholar
Kitagawa K., Matsumoto M., Oda T., et al. (1990) Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience35, 551–558. ArticlePubMedCAS Google Scholar
Jenner P., Dexter D.T., Sian J., et al. (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann. Neurol.32(Suppl.), S82-S87. ArticlePubMedCAS Google Scholar
Geddes J.W., Tekirian T.L., Soultanian N.S., et al. (1997) Comparison of neuropathologic criteria for the diagnosis of Alzheimer’s disease. Neurobiol. Aging18, S99-S105. ArticlePubMedCAS Google Scholar
Gentleman S.M., Graham D.I., and Roberts G.W. (1993) Molecular pathology of head trauma: altered beta APP metabolism and the aetiology of Alzheimer’s disease. Prog. Brain. Res.96, 237–246. PubMedCAS Google Scholar
Roberts G.W., Gentleman S.M., Lynch A., et al. (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry.57, 419–425. PubMedCAS Google Scholar
Lim G.P., Chu T., Yang F., et al. (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci.21, 8370–8377. PubMedCAS Google Scholar
Sung S., Yao Y., Uryu K., et al. (2004) Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J.18, 323–325. PubMedCAS Google Scholar
Matsubara E., Bryant-Thomas T., Pacheco Quinto J., et al. (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem.85, 1101–1108. ArticlePubMedCAS Google Scholar
Veurink G., Liu D., Taddei K., et al. (2003) Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radical Biol. Med.34, 1070–1077. ArticleCAS Google Scholar
Johnson G.V. and Bailey C.D. (2002) T, where are we now? J. Alzheimer’s Dis.4, 375–398. CAS Google Scholar
Gomez-Ramos A., Diaz-Nido J., Smith M.A., et al. (2003) Effect of the lipid peroxidation product acrolein on τ phosphorylation in neural cells. J. Neurosci. Res.71, 863–870. ArticlePubMedCAS Google Scholar
Ho P.I., Ortiz D., Rogers E., and Shea T.B. (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J. Neurosci. Res.70, 694–702. ArticlePubMedCAS Google Scholar
Olivieri G., Brack C., Muller-Spahn F., et al. (2000) Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and τ phosphorylation in SHSY5Y neuroblastoma cells. J. Neurochem.74, 231–236. ArticlePubMedCAS Google Scholar
Mattson M.P., Fu W., Waeg G., and Uchida K. (1997) 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein τ. Neuroreport.8, 2275–2281. ArticlePubMedCAS Google Scholar
Egana J.T., Zambrano C., Nunez M.T., et al. (2003) Iron-induced oxidative stress modify τ phosphorylation patterns in hippocampal cell cultures. Biometals16, 215–223. ArticlePubMedCAS Google Scholar
Ko L., Odawara T., and Yen S.H. (1997) Menadione-induced τ dephosphorylation in cultured human neuroblastoma cells. Brain Res.760, 118–128. ArticlePubMedCAS Google Scholar
Davis D.R., Anderton B.H., Brion J.P., et al. (1997) Oxidative stress induces dephosphorylation of τ in rat brain primary neuronal cultures. J. Neurochem.68, 1590–1597. ArticlePubMedCAS Google Scholar
Takeda A., Smith M.A., Avila J., et al. (2000) In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of τ induced by 4-hydroxy-2-nonenal modification. J. Neurochem.75, 1234–1241. ArticlePubMedCAS Google Scholar
Perez M., Hernandez F., Gomez-Ramos A., et al. (2002) Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur. J. Biochem.269, 1484–1489. ArticlePubMedCAS Google Scholar
Perez M., Cuadros R., Smith M.A., et al. (2000) Phosphorylated, but not native, τ protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett.486, 270–274. ArticlePubMedCAS Google Scholar
Wilson D.M. and Binder L.I. (1997) Free fatty acids stimulate the polymerization of τ and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am. J. Pathol.150, 2181–2195. PubMedCAS Google Scholar
Gamblin T.C., King M.E., Dawson H., et al. (2000) In vitro polymerization of τ protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry39, 6136–6144. ArticlePubMedCAS Google Scholar
Nacharaju P., Lewis J., Easson C., et al. (1999) Accelerated filament formation from τ protein with specific FTDP-17 missense mutations. FEBS Lett.447, 195–199. ArticlePubMedCAS Google Scholar
Gamblin T.C., King M.E., Kuret J., et al. (2000) Oxidative regulation of fatty acid-induced τ polymerization. Biochemistry39, 14,203–14,210. CAS Google Scholar
Smith M.A., Casadesus G., Joseph J.A., and Perry G. (2002) Amyloid-beta and τ serve antioxidant functions in the aging and Alzheimer brain. Free Radical Biol. Med.33, 1194–1999. ArticleCAS Google Scholar
Lee H.G., Petersen R.B., Zhu X., et al. (2003) Will preventing protein aggregates live up to its promise as prophylaxis against neurodegenerative diseases? Brain Pathol.13, 630–638. ArticlePubMedCAS Google Scholar
Gomez-Isla T., Hollister R., West H., et al. (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol.41, 17–24. ArticlePubMedCAS Google Scholar
Kril J.J., Patel S., Harding A.J., and Halliday G.M. (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol. (Berl.)103, 370–376. Article Google Scholar
Morsch R., Simon W., and Coleman P.D. (1999) Neurons may live for decades with neurofibrillary tangles. J. Neuropathol. Exp. Neurol.58, 188–197. ArticlePubMedCAS Google Scholar
Curtain C.C., Ali F., Volitakis I., et al. (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem.276, 20,466–20,473. ArticleCAS Google Scholar
Hock C., Golombowski S., Muller-Spahn F., et al. (1998) Cerebrospinal fluid levels of amyloid precursor protein and amyloid beta-peptide in Alzheimer’s disease and major depression—inverse correlation with dementia severity. Eur. Neurol.39, 111–118. ArticlePubMedCAS Google Scholar
Hou L., Kang I., Marchant R.E., and Zagorski M.G. (2002) Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1–42) peptide of Alzheimer’s disease. J. Biol. Chem.277, 40,173–40,176. CAS Google Scholar
Zou K., Gong J.S., Yanagisawa K., and Michikawa M. (2002) A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci.22, 4833–4841. PubMedCAS Google Scholar
Kontush A., Berndt C., Weber W., et al. (2001) Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radical Biol. Med.30, 119–128. ArticleCAS Google Scholar