The neurobiology of the tuberous sclerosis complex (original) (raw)
References
Astridinis A. and Henske E. P. (2005) Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene24, 7475–7481. Google Scholar
Astrinidis A., Senapedis W., Coleman T. R., and Henske E. P. (2003) Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J. Biol. Chem.278, 51,372–51,379. CAS Google Scholar
Baron Y. and Barkovich A. J. (1999) MR imaging of tuberous sclerosis in neonates and young infants. AJNR Am. J. Neuroradiol.20, 907–916. PubMedCAS Google Scholar
Baybis M., Yu J., Lee A., et al. (2004) mTOR Cascade Activation Distinguishes Tubers from Focal Cortical Dysplasia. Ann. Neurol.56, 478–487. PubMedCAS Google Scholar
Birchenall-Roberts M. C., Fu T., Bang O. S., et al. (2004) Tuberous Sclerosis Complex 2 Gene Product Interacts with Human SMAD Proteins: a molecular link of two tumor suppressor pathways. J. Biol. Chem.279, 25,605–25,613. CAS Google Scholar
Carlson B. A., Houser O. W., and Gomez M. R. (1999) Brain Imaging in the Tuberous Sclerosis Complex, in Tuberous Sclerosis Complex: developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., and Whittemore V. H., eds., Oxford University Press, New York, pp. 85–100. Google Scholar
Catania M. G., Mischel P. S., and Vinters H. V. (2001) Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B. J. Neuropathol. Exp. Neurol.60, 711–723. PubMedCAS Google Scholar
Chan J. A., Zhang H., Roberts P. S., et al. (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol.63, 1236–1242. PubMedCAS Google Scholar
Chugani D. C., Chugani H. T., Muzik O., et al. (1998) Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann. Neurol.44, 858–866. PubMedCAS Google Scholar
Consortium ECTS (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75, 1305–1315. Google Scholar
Crino P. B. and Henske E. P. (1999) New developments in the neurobiology of the tuberous sclerosis complex. Neurology. 53, 1384–1390. PubMedCAS Google Scholar
Crino P. B., Miyata H., and Vinters H. V. (2002) Neurodevelopmental Disorders as a Cause of Seizures: Neuropathologic, Genetic, and Mechanistic Considerations. Brain Pathol.12, 212–233. ArticlePubMedCAS Google Scholar
Crino P. B., Trojanowski J. Q., Dichter M. A., and Eberwine J. (1996) Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc. Natl. Acad. Sci. USA93, 14,152–14,157. CAS Google Scholar
Curatolo P., Bombardieri R., Verdecchia M., and Seri S. (2005) Intractable Seizures in Tuberous Sclerosis Complex: From Molecular Pathogenesis to the Rationale for Treatment. J. Child Neurol.20, 318–325. PubMed Google Scholar
Curatolo P., Seri S., Verdecchia M., and Bombardieri R. (2001) Infantile spasms in tuberous sclerosis complex. Brain Dev.23, 502–507. PubMedCAS Google Scholar
Dabora S. L., Jozwiak S., Franz D. N., et al. (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet.68, 64–80. PubMedCAS Google Scholar
Dan H. C., Sun M., Yang L., et al. (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem.277, 35,364–35,370. CAS Google Scholar
DiMario F. J. Jr. (2004) Brain abnormalities in tuberous sclerosis complex. J. Child Neurol.19, 650–657. PubMed Google Scholar
Ess K. C., Kamp C. A., Tu B. P., and Gutmann D. H. (2005) Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology. 64, 1446–1449. PubMed Google Scholar
Ess K. C., Uhlmann E. J., Li W., et al. (2004) Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia46, 28–40. PubMed Google Scholar
Fauser S., Becker A., Schulze-Bonhage A., et al. (2004) CD34-immunoreactive balloon cells in cortical malformations. Acta Neuropathol. (Berl.)108, 272–278. Google Scholar
Finlay G. A., York B., Karas R. H., et al. (2004) Estrogen-induced smooth muscle cell growth is regulated by tuberin and associated with altered activation of platelet-derived growth factor receptor-beta and ERK-1/2. J. Biol. Chem.279, 23,114–23,122. CAS Google Scholar
Gao X. and Pan D. (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev.15, 1383–1392. PubMedCAS Google Scholar
Goh S., Butler W., and Thiele E. A. (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology63, 1457–1461. PubMed Google Scholar
Goh S., Kwiatkowski D. J., Dorer D. J., and Thiele E. A. (2005) Infantile spasms and intellectual outcomes in children with tuberous sclerosis complex. Neurology65, 235–238. PubMed Google Scholar
Gomez M. R. (1999) Natural History of Cerebral Tuberous Sclerosis, in Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., and Whittemore V. H., eds., Oxford University Press, New York, pp. 29–46. Google Scholar
Goodman M., Lamm S. H., Engel A., Shepherd C. W., Houser O. W., and Gomez M. R. (1997) Cortical tuber count: a biomarker indicating neurologic severity of tuberous sclerosis complex. J. Child Neurol.12, 85–90. PubMedCAS Google Scholar
Griffiths P. D., Bolton P., and Verity C. (1998) White matter abnormalities in tuberous sclerosis complex. Acta Radiol.39, 482–486. PubMedCAS Google Scholar
Gutmann D. H., Zhang Y., Hasbani M. J., Goldberg M. P., Plank T. L., and Henske E. P. (2000) Expression of the tuberous sclerosis complex gene products, hamartin and tuberin, in central nervous system tissues. Acta Neuropathol. (Berl.)99, 223–230. CAS Google Scholar
Haddad L. A., Smith N., Bowser M., et al. (2002) The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J. Biol. Chem.277, 44,180–44,186. CAS Google Scholar
Henske E. P., Scheithauer B. W., Short M. P., et al. (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am. J. Hum. Genet.59, 400–406. PubMedCAS Google Scholar
Henske E. P., Wessner L. L., Golden J., et al. (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am. J. Pathol.151, 1639–1647. PubMedCAS Google Scholar
Hirose T., Scheithauer B. W., Lopes M. B., et al. (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol. (Berl.)90, 387–399. CAS Google Scholar
Hosoya M., Naito H., and Nihei K. (1999) Neurological prognosis correlated with variations over time in the number of subependymal nodules in tuberous sclerosis. Brain Dev.21, 544–547. PubMedCAS Google Scholar
Humphreys R. P. (2004) The modernization of pediatric neurosurgery. The Donald D. Matson Lecture 2003. Childs Nerv. Syst.20, 18–22. PubMed Google Scholar
Im E., von Lintig F. C., Chen J., et al. (2002) Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene21, 6356–6365. PubMedCAS Google Scholar
Jansen L. A., Uhlmann E. J., Crino P. B., Gutmann D. H., and Wong M. (2005) Epileptogenesis and Reduced Inward Rectifier Potassium Current in Tuberous Sclerosis Complex-1-Deficient Astrocytes. Epilepsia46, 1871–1880. PubMedCAS Google Scholar
Johnson M. W., Emelin J. K., Park S. H., and Vinters H. (1999) Co-localization of TSC1 and TSC2 gene products in tubers of patients with tuberous sclerosis. Brain Pathol.9, 45–54. ArticlePubMedCAS Google Scholar
Johnson M. W., Kerfoot C., Bushnell T., Li M., and Vinters H. V. (2001) Hamartin and tuberin expression in human tissues. Mod. Pathol: Official J. US and Can. Acad. Pathol., Inc.14, 202–210. CAS Google Scholar
Joinson C., O'Callaghan F. J., Osborne J. P., Martyn C., Harris T., and Bolton P. F. (2003) Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol. Med.33, 335–344. PubMedCAS Google Scholar
Jones A. C., Daniells C. E., Snell R. G., et al. (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum. Mol. Genet.6, 2155–2161. PubMedCAS Google Scholar
Jones A. C., Shyamsundar M. M., Thomas M. W., et al. (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet.64, 1305–1315. PubMedCAS Google Scholar
Kerfoot C., Wienecke R., Menchine M., et al. (1996) Localization of tuberous sclerosis 2 mRNA and its protein product tuberin in normal human brain and in cerebral lesion of patients with tuberous sclerosis. Brain Pathol.6, 367–377. PubMedCAS Google Scholar
Kim S. K., Wang K. C., Cho B. K., et al. (2001) Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J. Neuro-Oncol.52, 217–225. CAS Google Scholar
Knudson A. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA68, 820–823. PubMed Google Scholar
Koh S., Jayakar P., Dunoyer C., et al. (2000) Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia41, 1206–1213. PubMedCAS Google Scholar
Kwiatkowska J., Wigowska-Sowinska J., Napierala D., Slomski R., and Kwiatkowski D. J. (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N. Engl. J. Med.340, 703–707. PubMedCAS Google Scholar
Kyin R., Hua Y., Baybis M., et al. (2001) Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am. J. Pathol.159, 1541–1554. PubMedCAS Google Scholar
Lamb R. F., Roy C., Diefenbach T. J., et al. (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat. Cell Biol.2, 281–287. PubMedCAS Google Scholar
Lazarowski A., Lubieniecki F., Camarero S., et al. (2004) Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr. Neurol.30, 102–106. PubMed Google Scholar
Lee A., Maldonado M., Baybis M., et al. (2003) Markers of cellular proliferation are expressed in cortical tubers. Ann. Neurol.53, 668–673. PubMedCAS Google Scholar
Li Y., Inoki K., Vacratsis P., and Guan K. L. (2003) The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem.278, 13,663–13,667. CAS Google Scholar
Lopes M. B., Altermatt H. J., Scheithauer B. W., Shepherd C. W., and VandenBerg S. R. (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. (Berl.)91, 368–375. CAS Google Scholar
Lou D., Griffith N., and Noonan D. J. (2001) The tuberous sclerosis 2 gene product can localize to nuclei in a phosphorylation-dependent manner. Mol. Cell Biol. Res. Commun.4, 374–380. PubMedCAS Google Scholar
Ma L., Chen Z., Erdjument-Bromage H., Tempst P., and Pandolfi P. P. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell121, 179–193. PubMedCAS Google Scholar
Maheshwar M. M., Cheadle J. P., Jones A. C., et al. (1997) The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum. Mol. Genet.6, 1991–1996. PubMedCAS Google Scholar
Maldonado M., Baybis M., Newman D., et al. (2003) Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol. dis.14, 279–290. PubMedCAS Google Scholar
Manning B. D., Tee A. R., Logsdon M. N., Blenis J., and Cantley L. C. (2003) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell Biol.10, 151–162. Google Scholar
Manning B. D., Logsdon M. N., Lipovsky A. I., Abbott D., Kwiatkowski D. J., and Cantley L. C. (2005) Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev.19, 1773–1778. PubMedCAS Google Scholar
Miyata H., Chiang A. C., and Vinters H. V. (2004) Insulin signaling pathways in cortical dysplasia and TSCtubers: tissue microarray analysis. Ann. Neurol.56, 510–509. PubMedCAS Google Scholar
Mizuguchi M. and Takashima S. (2001) Neuropathology of tuberous sclerosis. Brain Dev.23, 508–515. PubMedCAS Google Scholar
Murthy V., Han S., Beauchamp R. L., et al. (2004) Pam and its ortholog highwire interact with and may negatively regulate the TSC1.TSC2 complex. J. Biol. Chem.279, 1351–1358. PubMedCAS Google Scholar
Murthy V., Stemmer-Rachamimov A. O., Haddad L. A., et al. (2001) Developmental expression of the tuberous sclerosis proteins tuberin and hamartin. Acta Neuropathol. (Berl.)101, 202–210. CAS Google Scholar
Niida Y., Lawrence-Smith N., Banwell A., et al. (1999) Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis. Hum. Mutat.14, 412–422. PubMedCAS Google Scholar
Niida Y., Stemmer-Rachamimov A. O., Logrip M., et al. (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am. J. Hum. Genet.69, 493–503. PubMedCAS Google Scholar
Noonan D. J., Lou D., Griffith N., and Vanaman T. C. (2002) A calmodulin binding site in the tuberous sclerosis 2 gene product is essential for regulation of transcription events and is altered by mutations linked to tuberous sclerosis and lymphangioleiomyomatosis. Arch. Biochem. Biophys.398, 132–140. PubMedCAS Google Scholar
O'Callaghan F. J., Harris T., Joinson C., et al. (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch. Dis. Child.89, 530–533. PubMed Google Scholar
Onda H., Crino P. B., Zhang H., et al. (2002) Tsc2 null murine neuronal epithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol. Cell Neurosci.21, 561–574. PubMedCAS Google Scholar
Park S. H., Pepkowitz S. H., Kerfoot C., et al. (1997) Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol. (Berl.)94, 180–186. CAS Google Scholar
Plank T. L., Yeung R. S., and Henske E. P. (1998) Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res.58, 4766–4770. PubMedCAS Google Scholar
Plank T. L., Logginidou H., Klein-Szanto A., and Henske E. P. (1999) The expression of hamartin, the product of the TSC1 gene, in normal human tissues and in TSC1- and TSC2-linked angiomyolipomas. Mod. Pathol.12, 539–545. PubMedCAS Google Scholar
Potter C. J., Huang H., and Xu T. (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell105, 357–368. PubMedCAS Google Scholar
Prather P. and de Vries P. J. (2004) Behavioral and cognitive aspects of tuberous sclerosis complex. J. Child Neurol.19, 666–674. PubMed Google Scholar
Ridler K., Bullmore E. T., De Vries P. J., et al. (2001) Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol. Med.31, 1437–1446. ArticlePubMedCAS Google Scholar
Roach E. S., Gomez M. R., and Northrup H. (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J. Child Neurol.13, 624–628. ArticlePubMedCAS Google Scholar
Rosner M. and Hengstschlager M. (2004) Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J. Biol. Chem.79, 48,707–48,715. Google Scholar
Rott H. D., Lemcke B., Zenker M., Huk W., Horst J., and Mayer K. (2002) Cyst-like cerebral lesions in tuberous sclerosis. Am. J. Med. Genet.111, 435–439. PubMed Google Scholar
Roux P. P., Ballif B. A., Anjum R., Gygi S. P., and Blenis J. (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA101, 13,489–13,494. CAS Google Scholar
Sancak O., Nellist M., Goedbloed M., et al. (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet.13, 731–741. PubMedCAS Google Scholar
Saucedo L. J., Gao X., Chiarelli D. A., Li L., Pan D., and Edgar B. A. (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566–571. PubMedCAS Google Scholar
Scheithauer B. W. and Reagan T. J. (1999) Neuropathology, in Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., and Whittemore V. H., eds., Oxford University Press, New York, pp. 101–144. Google Scholar
Sharma M. C., Ralte A. M., Gaekwad S., Santosh V., Shankar S. K., and Sarkar C. (2004) Subependymal Giant Cell Astrocytoma-a Clinicopathological Study of 23 Cases with Special Emphasis on Histogenesis. Pathol. Oncol. Res.10, 219–224. ArticlePubMed Google Scholar
Shumway S. D., Li Y., and Xiong Y. (2003) 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J. Biol. Chem.278, 2089–2092. PubMedCAS Google Scholar
Smalley S. L. (1997) Autism and tuberous sclerosis. J. Autism Dev. Disord.28, 407–414. Google Scholar
Stefansson K., Wollmann R. L., and Huttenlocher P. R. (1999) Lineages of Cells in the Central Nervous System, in Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., Whittemore V. H., eds., Oxford University Press: New York, pp. 250–262. Google Scholar
Stocker H., Radimerski T., Schindelholz B., et al. (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol.5, 559–566. PubMedCAS Google Scholar
Takahashi D. K., Dinday M. T., Barbaro N. M., and Baraban S. C. (2004) Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia45, 1525–1530. PubMed Google Scholar
Tavazoie S. F., Alvarez V. A., Ridenour D. A., Kwiatkowski D. J., and Sabatini B. L. (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci.8, 1727–1734. PubMedCAS Google Scholar
Tee A. R., Manning B. D., Roux P. P., Cantley L. C., and Blenis J. (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol.13, 1259–1268. PubMedCAS Google Scholar
Thiele E. A. (2004) Managing epilepsy in tuberous sclerosis complex. J. Child Neurol.19, 680–686. PubMed Google Scholar
Uhlmann E. J., Wong M., Baldwin R. L., et al. (2002) Astrocyte-Specific TSC1 Conditional Knockout Mice Exhibit Abnormal Neuronal Organization and Seizures. Ann. Neurol.52, 285–296. PubMedCAS Google Scholar
van Slegtenhorst M. and de Hoogt R. (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science277, 805–808. PubMed Google Scholar
van Slegtenhorst M., Nellist M., Nagelkerken B., et al. (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet.7, 1053–1057. PubMed Google Scholar
van Slegtenhorst M., Verhoef S., Tempelaars A., et al. (1999) Mutational spectrum of the TSC1 gene in cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J. Med. Genet.36, 285–289. PubMed Google Scholar
Weiner H. L. (2004) Tuberous sclerosis and multiple tubers: localizing the epileptogenic zone. Epilepsia45 (Suppl. 4), 41–42. PubMed Google Scholar
Wenzel H. J., Patel L. S., Robbins C. A., Emmi A., Yeung R. S., and Schwartzkroin P. A. (2004) Morphology of Cerebral Lesions in the Eker Rat Model of Tuberous Sclerosis. Acta Neuropathol.108, 97–108. PubMed Google Scholar
White R., Hua Y., Scheithauer B., Lynch D. R., Henske E. P., and Crino P. B. (2001) Selective Alterations in Glutamate and GABAReceptor Subunit mRNA Expression in Dysplastic Neurons and Giant Cells of Cortical Tubers. Ann. Neurol.49, 67–78. PubMedCAS Google Scholar
Wienecke R., Maize J. C. Jr., Shoarinejad F., et al. (1996) Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene13, 913–923. PubMedCAS Google Scholar
Wong M., Ess K. C., Uhlmann E. J., et al. (2003) Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol.54, 251–256. PubMedCAS Google Scholar
Xiao G. H., Shoarinejad F., Jin F., Golemis E. A., and Yeung R. S. (1997) The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem.272, 6097–6100. PubMedCAS Google Scholar
Yamanouchi H., Jay V., Rutka J. T., Takashima S., and Becker L. E. (1997) Evidence of abnormal differentiation in giant cells of tuberous sclerosis. Pediatr. Neurol.17, 49–53. PubMedCAS Google Scholar
Yeung R. S., Katsetos C. D., and Klein-Szanto A. (1997) Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am. J. Pathol.151, 1477–1486. PubMedCAS Google Scholar
Zhang Y., Gao X., Saucedo L. J., Ru B., Edgar B. A., and Pan D. (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol.5, 578–581. PubMedCAS Google Scholar