Cellular and molecular mechanisms of cerebellar granule cell migration (original) (raw)

References

  1. Rakic, P. (1990) Principles of neuronal cell migration. Experientia 46, 882–891.
    PubMed CAS Google Scholar
  2. Hatten, M. E. and Heintz, N. (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci 18, 385–408.
    PubMed CAS Google Scholar
  3. Komuro, H. and Rakic, P. (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J. Neurobiol. 37, 110–130.
    PubMed CAS Google Scholar
  4. Hatten, M. E. (1999) Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539.
    PubMed CAS Google Scholar
  5. Sidman, R. L. and Rakic, P. (1973) Neuronal migration, with special reference to developing human brain: A review. Brain Res. 62, 1–35.
    PubMed CAS Google Scholar
  6. Miller, M. W. (1986) Effects of alcohol on generation and migration of cerebral cortex neurons. Science 233, 1308–1311.
    PubMed CAS Google Scholar
  7. Chevassus-au-Louis, N. and Represa, A. (1999) The right neuron at the wrong place: biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies. Cell. Mol. Life Sci. 55, 1206–1215.
    PubMed CAS Google Scholar
  8. Ross, M. E., Allen, K. M., Strivastava, A. K. et al. (1997) Linkage and physical mapping of X-linked lissencephaly/SBH (XLIS): a gene causing neuronal migration defects in human brain. Hum. Mol. Genet. 6, 555–562.
    PubMed CAS Google Scholar
  9. Allen, K. M. and Walsh, C. A. (1999) Genes that regulate neuronal migration in the cerebral cortex. Epilepsy Res. 36, 143–154.
    PubMed CAS Google Scholar
  10. Walsh, C. A. (2000) Genetics of neuronal migration in the cerebral cortex. MRDD Res. Rev. 6, 34–40.
    CAS Google Scholar
  11. Gressens, P., Baes, M., Leroux, P., et al. (2000) Neuronal migration disorder in Zellweger mice is secondary to glutamate receptor dysfunction. Ann. Neurol. 48, 336–343.
    PubMed CAS Google Scholar
  12. Gleeson, J. G. (2001) Neuronal migration disorders. MRDD Res. Rev. 7, 167–171.
    CAS Google Scholar
  13. Flint, A. C. and Kriegstein, A. R. (1997) Mechanisms underlying neuronal migration disorders and epilepsy. Curr. Opin. Neurol. 10, 92–97.
    PubMed CAS Google Scholar
  14. Copp, A. J. and Harding, B. N. (1999) Neuronal migration disorders in humans and in mouse models—an overview. Epilepsy Res. 36, 133–141.
    PubMed CAS Google Scholar
  15. Lammens, M. (2000) Neuronal migration disorders in man. Eur. J. Morphol. 38, 327–333.
    PubMed CAS Google Scholar
  16. Uher, B. F. and Golden, J. A. (2000) Neuronal migration defects of the cerebral cortex: a destination debacle. Clin. Genet. 58, 16–24.
    PubMed CAS Google Scholar
  17. Barth, P. G. (1987) Disorders of neuronal migration. Can. J. Neurol. Sci. 14, 1–16.
    PubMed CAS Google Scholar
  18. Bahh, B. E., Lespinet, V., Lurton, D., et al. (1999) Correlations between granule cell dispersion, mossy fiber sprouting, and hippocampal cell loss in temporal lobe epilepsy. Epilepsia 40, 1393–1401.
    PubMed Google Scholar
  19. Otsubo, H., Steinlin, M., Hwang, P. A., et al. (1997) Positive epileptiform discharges in children with neuronal migration disorders. Pediatr. Neurol. 9, 101–107.
    Google Scholar
  20. Prasad, A. N., Prasad, C., and Stafstrom, C. E. (1999) Recent advances in the genetics of epilepsy: insights from human and animal studies. Epilepsia 40, 1329–1352.
    PubMed CAS Google Scholar
  21. Brodtkorb, E., Nilsen, G., Smevik, O., et al. (1992) Epilepsy and anomalies of neuronal migration: MRI and clinical aspects. Acta Neurol. Scand. 86, 24–32.
    PubMed CAS Google Scholar
  22. Battaglia, G., Arcelli, P., Granata, T., et al. (1996) Neuronal migration disorders and epilepsy: a morphological analysis of three surgically treated patients. Epilepsy Res. 26, 49–58.
    PubMed CAS Google Scholar
  23. Palmini, A., Andermann, F., Olivier, A., et al. (1991) Focal neuronal migration disorders and intractable partial epilepsy: results of surgical treatment. Ann. Neurol. 30, 750–757.
    PubMed CAS Google Scholar
  24. Hatten, M. E. and Mason, C. A. (1990) Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 46, 907–916.
    PubMed CAS Google Scholar
  25. Rakic, P., Cameron, R. S., and Komuro, H. (1994) Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr. Opin. Neurobiol. 4, 63–69.
    PubMed CAS Google Scholar
  26. Rakic, P. and Komuro, H. (1995) The role of receptor/channel activity in neuronal cell migration. J. Neurobiol. 26, 299–315.
    PubMed CAS Google Scholar
  27. Komuro, H. and Rakic, P. (1999) In vitro analysis of signal mechanisms involved in neuronal migration, in The Neuron in Tissue Culture (Haynes, L. W., ed.) J Wiley, New York, pp. 57–69.
    Google Scholar
  28. Komuro, H. and Yacubova, E. (2001) Migration of cerebellar granule cell. Cell Technol. 20, 513–519.
    Google Scholar
  29. Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A golgi and electron microscopic study in Macacus rhesus. J. Comp. Neurol. 141, 283–312.
    PubMed CAS Google Scholar
  30. Komuro, H. and Rakic, P. (1993) Modulation of neuronal migration by NMDA receptors. Science 260, 95–97.
    PubMed CAS Google Scholar
  31. Ryder, E. F. and Cepko, C. L. (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12, 1011–1029.
    PubMed CAS Google Scholar
  32. Behar, T. N., Scott, C. A., Greene, C. L., et al. (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J. Neurosci. 19, 449–4461.
    Google Scholar
  33. Hirai, H., Yoshioka, H., Kihara, M., et al. (1999) Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study. Dev. Brain Res. 114, 63–67.
    CAS Google Scholar
  34. Komuro, H. and Rakic, P. (1995) Dynamics of granule cell migration: a confocal microscopic study in acute cerebellar slice preparations. J. Neurosci. 15, 1110–1120.
    PubMed CAS Google Scholar
  35. Komuro, H. and Rakic, P. (1998) Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J. Neurosci. 18, 1478–1490.
    PubMed CAS Google Scholar
  36. Komuro, H., Yacubova, E., Yacubova, E., et al. (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J. Neurosci. 21 527–540.
    PubMed CAS Google Scholar
  37. Miale, I. L. and Sidman, R. L. (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4, 277–296.
    PubMed CAS Google Scholar
  38. Fujita, S., Shimada, M., and Nakamura, T. (1966) H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J. Comp. Neurol. 128, 191–208.
    PubMed CAS Google Scholar
  39. Fujita, S. (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J. Cell. Biol. 32, 277–287.
    PubMed CAS Google Scholar
  40. Altman, J. (1972) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J. Comp. Neurol. 145, 353–398.
    PubMed CAS Google Scholar
  41. Ramon y Cajal, S. (1911) Histologie du System Nerveux de l'Homme et des Vertebres. Malonine, Paris, Vol. 2.
    Google Scholar
  42. Fishell, G. and Hatten, M. E. (1991) Astrotactin provides a receptor system for CNS neuronal migration. Development 113, 755–765.
    PubMed CAS Google Scholar
  43. Fishman, R. B. and Hatten, M. E. (1993) Multiple receptor systems promote CNS neuronal migration. J. Neurosci. 13, 3485–3495.
    PubMed CAS Google Scholar
  44. Rivas, R. J. and Hatten, M. E. (1995) Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989.
    PubMed CAS Google Scholar
  45. Choung, C-M., Crossin, K. L., and Edelman, G. M. (1987) Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers. J. Cell. Biol. 104, 331–342.
    Google Scholar
  46. Choung, C-M. (1990) Differential roles of multiple adhesion molecules in cell migration: granule cell migration in cerebellum. Experientia 46, 892–899.
    Google Scholar
  47. Liesi, P. (1992) Neuronal migration on laminin involves neuronal contact formation followed by nuclear movement inside a preformed process. Exp. Neurol. 117, 103–113.
    PubMed CAS Google Scholar
  48. Nagata, I. and Nakatsuji, N. (1990) Granule cell behavior on laminin in cerebellar microexplant cultures. Dev. Brain Res. 52, 63–73.
    CAS Google Scholar
  49. Komuro, H. and Rakic, P. (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285.
    PubMed CAS Google Scholar
  50. Yacubova, E. and Komuro, H. (2002) Intrinsic program for migration of cerebellar granule cells in vitro. J. Neurosci. 22, 5966–5981.
    PubMed CAS Google Scholar
  51. Kuhar, S. G., Feng, L., Vidan, S., et al. (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117, 97–104.
    PubMed CAS Google Scholar
  52. Rocamora, N., Garcia-Ladona, F. J., Palacios, J. M., et al. (1993) Differential expression of brainderived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Mol. Brain Res. 17, 1–8.
    PubMed CAS Google Scholar
  53. Friedman, G. C. and Seeds, N. W. (1995) Tissue plasminogen activator mRNA expression in granule neurons coincides with their migration in the developing cerebellum. J. Comp. Neurol. 360, 658–670.
    PubMed CAS Google Scholar
  54. Zheng, C., Heintz, N., and Hatten, M. E. (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272, 417–419.
    PubMed CAS Google Scholar
  55. Hatten, M. E., Alder, J., Zimmerman, K., et al. (1997) Genes involved in cerebellar cell specification and differentiation. Curr. Opin. Neurobiol. 7, 40–47.
    PubMed CAS Google Scholar
  56. Ilic, D., Furuta, Y., Kanazawa, S., et al. (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544.
    PubMed CAS Google Scholar
  57. Howell, B. W., Hawkes, R., Soriano, P., et al. (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737.
    PubMed CAS Google Scholar
  58. Sheldon, M., Rice, D. S., D'Arcangelo, G., et al. (1997) Scrambler and yotari disrupt the disabled gene and produce a _reeler_-like phenotype in mice, Nature 389, 730–733.
    PubMed CAS Google Scholar
  59. Ware, M. L., Fox, J. W., Gonzalez, J. L., et al. (1997) Aberrant splicing of a mouse disabled homolog, madab1, in the scrambler mouse. Neuron 19, 239–249.
    PubMed CAS Google Scholar
  60. LoTurco, J. J., Blanton, M. G., and Kriegstein, A. R. (1991) Initial expression and endogenous activation of NMDA channels in early neocortical development. J. Neurosci. 11, 792–799.
    PubMed CAS Google Scholar
  61. Spitzer, N. C. (1994) Spontanous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. Trends Neurosci. 17, 115–118.
    PubMed CAS Google Scholar
  62. Navarro, B., Kennedy, M. E., Velimirovic, B., et al. (1996) Nonselective and Gβγ-insensitive weaver K+ channels. Science 272, 1950–1953.
    PubMed CAS Google Scholar
  63. Hendriks, R., Morest, D. K., and Kaczmarek, L. K. (1999) Role of neuronal cell migration for high-threshold potassium currents in the chicken hindbrain. J. Neurosci. Res. 58, 805–814.
    PubMed CAS Google Scholar
  64. Shibata, R., Nakahira, K., Shibasaki, K., et al. (2000) A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J. Neurosci. 20, 4145–4155.
    PubMed CAS Google Scholar
  65. Noctor, S. C., Flint, A. C., Weissman, T. A., et al. (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161–3173.
    PubMed CAS Google Scholar
  66. Lankford, K. L. and Letourneau, P. C. (1989) Evidence that calcium may control neurite outgrowth by regulating the stability of filaments. J. Cell Biol. 109, 1229–1243.
    PubMed CAS Google Scholar
  67. Kater, S. B. and Mills, L. R. (1991) Regulation of growth cone behavior by calcium. J. Neurosci. 11, 891–899.
    PubMed CAS Google Scholar
  68. Gu, X. and Spitzer, N. C. (1993) Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J. Neurosci. 13, 4936–4948.
    PubMed CAS Google Scholar
  69. Gu, X., Olson, E. C., and Spitzer, N. C. (1994) Spontaneous neuronal calcium spikes and waves during early differentiation. J. Neurosci. 14, 6325–6335.
    PubMed CAS Google Scholar
  70. Gu, X. and Spitzer, N. C. (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787.
    PubMed CAS Google Scholar
  71. Gomez, T. M. and Spitzer, N. C. (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium trnasients. Nature 397, 350–355.
    PubMed CAS Google Scholar
  72. Gomez, T. M., Robles, E., Poo, M., et al. (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987.
    PubMed CAS Google Scholar
  73. Komuro, H. and Rakic, P. (1992) Selective role of N-type calcium channels in neuronal migration. Science 257, 806–809.
    PubMed CAS Google Scholar
  74. Tam, T., Mathews, E., Snutch, T. P., et al. (2000) Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans. Dev. Biol. 226, 104–117.
    PubMed CAS Google Scholar
  75. Schafer, W. R. and Kenyon, C. J. (1995) A calcium channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375, 73–78.
    PubMed CAS Google Scholar
  76. Lee, R. Y. N., Lobel, L., Hengartner, M., et al. (1997) Mutations in the α1 subunit of a L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16, 6066–6076.
    PubMed CAS Google Scholar
  77. Connor, J. A., Tseng, H-Y., and Hockberger, P. E. (1987) Depolarization- and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures. J. Neurosci. 7, 1384–1400.
    PubMed CAS Google Scholar
  78. Zhu, X-Z. and Chuang, D-M. (1987) Modulation of calcium uptake and d-aspartate release by GABAB receptors in cultured cerebellar granule cells. Eur. J. Pharmacol. 141, 401–408.
    PubMed CAS Google Scholar
  79. Burgoyne, R. D., Pearce, I. A., and Cambray-Deakin, M. (1988) _N_-methyl-d-aspartate raises cytosolic calcium concentration in rat cerebellar granule cells in culture. Neurosci. Lett. 91, 47–52.
    PubMed CAS Google Scholar
  80. Howe, J. R., Cull-Candy, S. G., and Colquhoun, D. (1991) Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells. J. Physiol. 432, 143–202.
    PubMed CAS Google Scholar
  81. Laurie, D. J., Wisden, W., and Seeburg, P. H. (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172.
    PubMed CAS Google Scholar
  82. Nowark, L., Bregestovski, P., Ascher, P., et al. (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465.
    Google Scholar
  83. Johnson, J. W. and Ascher, P. (1987) Glycine potnntiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531.
    PubMed CAS Google Scholar
  84. Rossi, D. and Slater, T. N. (1993) The developmental onset of NMDA receptor channel activity during neuronal migration. Neuropharmacology 32, 1239–1248.
    PubMed CAS Google Scholar
  85. Farrant, M., Feldmeyer, D., Takahashi, T., et al. (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368, 335–339.
    PubMed CAS Google Scholar
  86. Monyer, H., Burnashev, N., Lauria, D. J., et al. (1994) Development of regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540.
    PubMed CAS Google Scholar
  87. Sheng, M., Cummings, J., Roldan, L. A., et al. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–146.
    PubMed CAS Google Scholar
  88. Feldmeyer, D. and Cull-Candy, S. (1996) Functional consequences of changes in NMDA receptor subunit expression during development. J. Neurocytol. 25, 857–867.
    PubMed CAS Google Scholar
  89. Rakic, P. and Sidman, R. L. (1973) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J. Comp. Neurol. 152, 103–132.
    PubMed CAS Google Scholar
  90. Marret, S., Gressens, P., and Evrard, P. (1996) Arrest of neuronal migration by excitatory amino acid in hamster developing brain. Proc. Natl. Acad. Sci. USA 93, 15,463–15,468.
    CAS Google Scholar
  91. Slater, N. T. and Rossi, D. J. (1996) Functional expression of NMDA receptors in developing neurons, in Excitatory Amino Acid and the Cerebral Cortex (Conti, F. and Hicks, T. P., eds.), MIT. Press, Cambridge, MA, pp. 215–226
    Google Scholar
  92. Newgreen, D. F. and Gooday, D. (1985) Control of the onset of migration of neural crest cells in avian embryos. Cell Tissue Res. 239, 329–336.
    PubMed CAS Google Scholar
  93. Sawyer, D. W., Sullivan, J. A., and Mandell, G. L. (1985) Intracellular free calcium localization in neutrophils during phagocytosis. Science 230, 663–666.
    PubMed CAS Google Scholar
  94. Jaconi, M. E. E., Theler, J. M., Schlegel, W., et al. (1991) Multiple elevation of cytosolic-free Ca2+ in human neutrophils: Initiation by adherence receptors of the integrin family. J. Cell Biol. 112, 1249–1257.
    PubMed CAS Google Scholar
  95. Moran, D. (1991) Voltage-dependent-L-type Ca2+ channels participate in regulating neural crest migration and differentiation. Am. J. Anat. 192, 14–22.
    PubMed CAS Google Scholar
  96. Brundage, R. A., Fogarty, K. E., Tuft, R. A., et al. (1993) Chemotaxis of newt eosinophils calcium regulation of chemotactic response. Am. J. Physiol. 265, C1527-C1543.
    PubMed CAS Google Scholar
  97. Anton, E., Hadjiargyrou, M., Patterson, P. H., et al. (1995) CD9 plays a role in Schwann cell migration in vitro. J. Neurosci. 15, 584–595.
    PubMed CAS Google Scholar
  98. Marks, P. W. and Maxfield, F. R. (1990) Transient increases in cytosolic calcium appear to be required for the migration of adherent human neutrophils. J. Cell Biol. 110, 43–52.
    PubMed CAS Google Scholar
  99. Rakic, P., Knyihar-Csillik, E., and Csillik, B. (1996) Polarity of microtuble assemblies and during neuronal cell migration. Proc. Natl. Acad. Sci. USA 93, 9218–9222.
    PubMed CAS Google Scholar
  100. Hynes, R. O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.
    PubMed CAS Google Scholar
  101. Clark, E. A. and Brugge, J. S. (1995) Integrins and signal transduction pathways: the road taken. Science 268, 233–239.
    PubMed CAS Google Scholar
  102. Lawson, M. A. and Maxfield, F. R. (1995) Ca2+-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79.
    PubMed CAS Google Scholar
  103. Borghesani, P. R., Michel Peyrin, J., Klein, R., et al. (2002) BDNF stimulates migration of cerebellar granule cells. Development 129, 1435–1442.
    PubMed CAS Google Scholar
  104. Rocamora, N., Garcia, L. F., Palacios, J. M., et al. (1993) Differential expression of brain-derived neurtrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Brain Res. Mol. Brain Res. 17, 1–8.
    PubMed CAS Google Scholar
  105. Wetmore, C., Ernfors, P., Persson, H., et al. (1990) Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp. Neurol. 109, 141–152.
    PubMed CAS Google Scholar
  106. Segal, R., Pomeroy, S., and Stiles, C. (1995) Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J. Neurosci. 15, 4970–4981.
    PubMed CAS Google Scholar
  107. Rio, C., Rieff, H. I., Qi, P., et al. (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50.
    PubMed CAS Google Scholar
  108. Ma, Q., Jones, D., Borghesani, P. R., et al. (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453.
    PubMed CAS Google Scholar
  109. Zou, Y. R., Kottmann, A. H., Kuroda, M., et al. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599.
    PubMed CAS Google Scholar
  110. Klein, R. S., Rubin, J. B., Gibson, H. D. et al. (2001) SDF-1α induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128, 1971–1981.
    PubMed CAS Google Scholar
  111. McGrath, K., Koniski, A. D., Maltby, K. M., et al. (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213, 442–456.
    PubMed CAS Google Scholar
  112. Lu, Q., Sun, E. E., Klein, R. S., et al. (2001) Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79.
    PubMed CAS Google Scholar
  113. Schindler, M., Humphrey, P. P. A., and Emson, P. C. (1996) Somatostatin receptors in the central nervous system. Prog. Neurobiol. 50, 9–47.
    PubMed CAS Google Scholar
  114. Patel, Y. C. (1997) Molecular Pharmacology of somatostatin receptor subtypes. J. Endocrinol. Invest. 20, 348–367.
    PubMed CAS Google Scholar
  115. Benoit, R., Bohlen, P., Ling, N., et al. (1982) Presence of somatostatin-28-(1–12) in hypothalamus and pancreas. Proc. Natl. Acad. Sci USA 79, 917–921.
    PubMed CAS Google Scholar
  116. Pradayrol, L., Jornvall, H., Mutt, V., et al. (1980) N-terminally extended somatostatin: the primary structure of somatostatin 28. FEBS Lett. 109, 55–58.
    PubMed CAS Google Scholar
  117. Bruno, J. F., Xu, Y., Song, J., et al. (1992) Molecular cloning and functinal expression of a brain specific somatostatin receptor. Proc. Natl. Acad. Sci. USA 89, 11,151–11,155.
    CAS Google Scholar
  118. O'Carroll, A. M., Lolait, S. J., Konig, M., et al. (1992) Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin 28. Mol. Pharmacol. 42, 939–946.
    PubMed Google Scholar
  119. Yamada, Y., Post, S. R., Wang, K., et al. (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract and kidney. Proc. Natl. Acad. Sci. USA 89, 251–255.
    PubMed CAS Google Scholar
  120. Yasuda, K., Domiano, S., Breder, C. D., et al. (1992) Cloning of a novel somatostatin receptor SSTR3, coupled to adenylyl cyclase. J. Biol. Chem. 267, 20,422–20,428.
    CAS Google Scholar
  121. Rocheville, M., Lange, D. C., Kumar, U., et al. (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157.
    PubMed CAS Google Scholar
  122. Vanetti, M., Kouba, M., Wang, X., et al. (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett. 311, 290–294.
    PubMed CAS Google Scholar
  123. Patel, Y. C., Greenwood, M. T., Kent, G. et al. (1993) Multiple gene transcripts of the somatostatin receptor SSTR2: tissue selective distribution and cAMP regulation. Biochem. Biophys. Res. Commun. 192, 288–294.
    PubMed CAS Google Scholar
  124. Florio, T. and Schettini, G. (1996) Multiple intracellular effectors modulate physiological functions of the cloned somatostatin receptors. J. Mol. Endocrinol. 17, 89–100.
    PubMed CAS Google Scholar
  125. Patel, Y. C., Greenwood, M. T., Panetta, R., et al. (1995) The somatostatin receptor family: A mini review. Life Sci. 57, 1249–1265.
    PubMed CAS Google Scholar
  126. Reisine, T. and Bell, G. I. (1995) Molecular properties of somatostatin receptors. Neuroscience 67, 777–790.
    PubMed CAS Google Scholar
  127. Chen, C. (1997) GO2 and Gi3 proteins mediate the action of somatostatin on membrane Ca2+ and K+ currents in ovine pituitary somatotrophs. Clin. Exp. Pharmacol. Physiol. 24, 639–645.
    PubMed CAS Google Scholar
  128. Chen, C. (1998) Gi−3 protein mediates the increase in voltage-gated K+ currents by somatostatin on cultured ovine somatotrophs. Am. J. Physiol. 275, E278-E284.
    PubMed CAS Google Scholar
  129. Connor, M., Yeo, A., and Henderson, G. (1997) Neuropeptide Y Y2 receptor and somatostatin sst2 receptor coupling to mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br. J. Pharmacol. 120, 455–463.
    PubMed CAS Google Scholar
  130. Degtiar, V. E., Wittig, B., Schultz, G., et al. (1996) A specific G0 heterotrimer couples somatostatin receptors to voltage-gated calcium channels in RINm5F cells. FEBS Lett. 380, 137–141.
    PubMed CAS Google Scholar
  131. Reardon, D. B., Dent, P., Wood, S. L., et al. (1997) Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphatase activity in membranes from transfected ras-transformed NIH 3T3 cells: coexpression with catalytically inactive SHP-2 blocks responsiveness. Mol. Endocrinol. 11, 1062–1069.
    PubMed CAS Google Scholar
  132. Rodriguez-Sanchez, M. N., Puebla, L., Lopez-Sanudo, S., et al. (1997) Dopamine enhances somatostatin receptor-mediated inhibition of adenylate cyclase in rat striatum and hippocampus. J. Neurosci. Res. 48, 238–248.
    PubMed CAS Google Scholar
  133. Takano, K., Yasufuku-Takano, J., Kozasa, T., et al. (1997) Different G proteins mediate somatostatin-induced inward rectifier K+ currents in murine brain and endocrine cells. J. Physiol. 502, 559–567.
    PubMed CAS Google Scholar
  134. Takano, K., Yasufuku-Takano, J., Teramoto, A., et al. (1997) Gi3 mediates somatostatin-induced activation of an inwardly rectifying K+ current in human growth hormone-secreting adenoma cells. Endocrinology 138, 2405–2409.
    PubMed CAS Google Scholar
  135. Traina, G. and Bagnoli, P. (1999) Mechanisms mediating somatostatin-induced reduction of cytosolic free calcium in PC12 cells. Neurosci. Lett. 265, 123–126.
    PubMed CAS Google Scholar
  136. Oomen, S. P., van Hennik, P. B., Antonissen, C., et al. (2002) Somatostatin is a selective chemoattractant for primitive (CD34+) hematopoietic progenitor cells. Exp. Hematol. 30, 116–125.
    PubMed CAS Google Scholar
  137. Partsch, G. and Matucci-Cerinic, M. (1992) Effect of substance P and somatostatin on migration of polymorohonuclear (PMN) cells in vitro, Inflammation 16, 539–547.
    PubMed CAS Google Scholar
  138. Oomen, S. P., Lichtenauer-Kaligis, E. G., Verplanke, N., et al. (2001) Somatostatin induces migration of acute myeloid leukemia cells via activation of somatostatin receptor subtype 2. Leukemia 15, 621–627.
    PubMed CAS Google Scholar
  139. Shinoda, H., Marini, A. M., and Schwartz, J. P. (1992) Developmental expression of the proenkephalin and prosomatostatin genes in cultured cortical and cerebellar astrocytes. Dev. Brain. Res. 67, 205–210.
    CAS Google Scholar
  140. Maubert, E., Slama, A., Ciofi, P., et al. (1994) Developmental patterns of somatostatin-receptors and somatostatin-immunoreactivity during early neurogenesis in the rat. Neuroscience 62, 317–325.
    PubMed CAS Google Scholar
  141. Thoss, V. S., Perez, J., Duc, D., et al. (1995) Embryonic and postnatal mRNA distribution of five somatostatin receptor subtypes in the rat brain. Neuropharmacology 34, 1673–1688.
    PubMed CAS Google Scholar
  142. Thoss, V. S., Duc, D., and Hoyer, D. (1996) Somatostatin receptors in the developing rat brain. Eur. J. Pharmacol. 297, 145–155.
    PubMed CAS Google Scholar
  143. Carpentier, V., Vaudry, H., Mallet, E., et al. (1997) Ontogeny of somatostatin binding sites in respiratory nuclei of the human brainstem. J. Comp. Neurol. 381, 461–472.
    PubMed CAS Google Scholar
  144. Marty, S. and Onteniente, B. (1997) The expression pattern of somatostatin and calretinin by postnatal hippocampal interneurons is regulated by activity-dependent and-independent determinants. Neuroscience 80, 79–88.
    PubMed CAS Google Scholar
  145. Leroux, P., Gonzalez, B. J., Bodenant, C., et al. (1992) Somatostatin: a putative neurotrophic factor with pleiotropic activity in the rat central nervous system. Prog. Brain Res. 92, 175–185.
    PubMed CAS Google Scholar
  146. Bologna, E. and Leroux, P. (2000) Identification of multiple somatostatin receptors in the rat somatosensory cortex during development. J. Comp. Neurol. 420, 466–480.
    PubMed CAS Google Scholar
  147. Thal, L. J., Laing, K., Horowitz, S. G., et al. (1986) Dopamine stimulates rat cortical somatostatin release. Brain Res. 372, 205–209.
    PubMed CAS Google Scholar
  148. Gray, D. B., Zelazny, D., Manthay, D., et al. (1990) Endogenous modulation of Ach release by somatostatin and differential role of calcium channels. J. Neurosci. 10, 2687–2698.
    PubMed CAS Google Scholar
  149. Hathway, G. J., Emson, P. C., Humphrey, P. P. A., et al. (1998) Somatostatin potently stimulates in vivo striatal dopamine and γ-aminobutyric acid release by a glutamate-dependent action. J. Neurochem. 70, 1740–1749.
    PubMed CAS Google Scholar
  150. Lanneau, C., Viollet, C., Faivre-Bauman, A., et al. (1998) Somatostatin receptor subtypes sst1 and sst2 elicit opposite effects on the response to glutamate of mouse hypothalamic neurons: an electrophysiological and single cell RT-PCR study. Eur. J. Neurosci. 10, 204–212.
    PubMed CAS Google Scholar
  151. Pittaluga, A., Feligioni, M., Ghersi, C., et al. (2001) Potentiation of NMDA receptor function through somatostatin release: a possible mechanism for the cognition-enhancing activity of GABAB receptor antagonists. Neuropharmacology 41, 301–310.
    PubMed CAS Google Scholar
  152. Gonzalez, B., Leroux, P., Bodenant, C., et al. (1990) Pharmacological characterization of somatostatin receptors in the rat cerebellum during development. J. Neurochem. 55, 729–737.
    PubMed CAS Google Scholar
  153. Viollet, C., Bodenant, C., Prunotto, C., et al. (1997) Differential expression of multiple somatostatin reseptors in rat cerebellum during development. J. Neurochem. 68, 2263–2272.
    PubMed CAS Google Scholar
  154. Inagaki, S., Shiosaka, S., Takatsuki, K., et al. (1982) Ontogeny of somatostatin-containing neuron system of the rat cerebellum including its fiber connections: an experimental and immunohistochemical analysis. Dev. Brain Res. 3, 509–527.
    CAS Google Scholar
  155. Naus, C. C. G. (1990) Developmental appearance of somatostatin in the rat cerebellum: in situ hybridization and immunohistochemistry. Brain Res. Bull. 24, 583–592.
    PubMed CAS Google Scholar
  156. Yacubova, E. and Komuro, H. (2002) Stage specific control of neuronal migration by somatostatin. Nature 415, 77–81.
    PubMed CAS Google Scholar
  157. Villar, M. J., Hokfelt, T., and Brown, J. C. (1989) Somatostatin expression in the cerebellar cortex during postnatal development. Anat. Embryol. 179, 257–267.
    PubMed CAS Google Scholar
  158. Inagaki, S., Shiosaka, S., Sekitani, M., et al. (1989) In situ hybridization analysis of the somatostatin-containing neuron system in developing cerebellum of rats. Mol. Brain Res. 6, 289–295.
    PubMed CAS Google Scholar
  159. Gonzalez, B., Leroux, P., Lamacz, M., et al. (1992) Somatostatin receptors are expressed by immature cerebellar granule cells: evidence for a direct inhibitory effect of somatostatin on neuroblast activity. Proc. Natl. Acad. Sci. USA 89, 9627–9631.
    PubMed CAS Google Scholar
  160. Baumbach, W. R., Carrick, T. A., Pausch, M. H., et al. (1998) A linear hexapeptide somatostatin antagonist blocks somatostatin activity in vitro and influences growth hormone release in rats. Mol. Pharmacol. 54, 864–873.
    PubMed CAS Google Scholar
  161. Ono, K., Nakatsuji, N., and Nagata, I. (1994) Migration behavior of granule cell neurons in cerebellar cultures. II. An electron microscopic study. Dev. Growth Differ. 36, 29–38.
    Google Scholar
  162. Sims, S. M., Lussier, B. T., and Kraicer, J. (1991) Somatostatin activates an inwardly rectifying K+ conductance in freshly dispersed rat somatotrophs. J. Physiol. 441, 615–637.
    PubMed CAS Google Scholar
  163. Rhie, D.-J., Yi, S.-Y., Hahn, S. J., et al. (1999) Somatostatin potentiates voltage-dependent K+ and Ca2+ channel expression induced by nerve growth factor in PC12 cells. Dev. Brain Res. 112, 267–274.
    CAS Google Scholar
  164. Wulfsen, I., Meyerhof, W., Fehr, S., et al. (1993) Expression patterns of rat somatostatin receptor genes in pre- and postnatal brain and pituitary. J. Neurochem. 61, 1549–1552.
    PubMed CAS Google Scholar
  165. Naus, C. C. G., Miller, F. D., Morrison, J. H., et al. (1988) Immunohistochemical and in situ hybridization analysis of the development of the rat somatostatin-containing neocortical neuronal system. J. Comp. Neurol. 269, 448–463.
    PubMed CAS Google Scholar

Download references