Functions of serotonin in hypoxic pulmonary vascular remodeling (original) (raw)

References

  1. Semenza, G. L. (1999) Perspectives on oxygen sensing. Cell 98, 281–284.
    Article PubMed CAS Google Scholar
  2. Yuan, X. J., Tod, M. L., Rubin, L. J., and Blaustein, M. P. (1990) Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol., 259, H281–289.
    PubMed CAS Google Scholar
  3. Egermayer, P., Town G. I., and Peacock, A. J. (1999) Role of serotonin in the pathogenesis of acute and chronic pulmonary hypertension. Thorax 54, 161–168.
    Article PubMed CAS Google Scholar
  4. Villalón, C. M., de Vries, P., and Saxena, P. R. (1997) Serotonin receptors as cardiovascular targets. Drug Discovery Today 2, 294–300.
    Article Google Scholar
  5. Rubin, L. J. (1999) Cellular and molecular mechanisms responsible for the pathogenesis of primary pulmonary hypertension. Pediatr. Pulmonol. 18(Suppl), 194–197.
    Article CAS Google Scholar
  6. Rich, S. (2000) Primary pulmonary hypertension. Curr. Treat. Options Cardiovasc. Med. 2, 135–140.
    Article PubMed Google Scholar
  7. Reeves, J. T., Groves B. M., and Turkevich, D. (1986) The case for treatment of selected patients with primary pulmonary hypertension. Am. Rev Respir. Dis. 134, 342–346.
    PubMed CAS Google Scholar
  8. Aaronson, P. I., Robertson, T. P., and Ward, J. P. (2002) Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir. Physiol. Neurobiol. 132, 107–120.
    Article PubMed CAS Google Scholar
  9. Novotna, J. and Herget, J. (2002) Possible role of matrix metalloproteinases in reconstruction of peripheral pulmonary arteries induced by hypoxia. Physiol. Res. 51, 323–334.
    PubMed CAS Google Scholar
  10. Raymond, J. R., Mukhin, Y. V., Gelasco, A., et al. (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther. 92, 179–212.
    Article PubMed CAS Google Scholar
  11. Kuang, S., Doran, S. A., Wilson, R. J., Goss G. G., and Goldberg, J. I. (2002) Serotonergic sensory-motor neurons mediate a behavioral response to hypoxia in pond snail embryos. J. Neurobiol. 52, 73–83.
    Article PubMed CAS Google Scholar
  12. Kinkead, R. and Mitchell, G. S. (1999) Time-dependent hypoxic ventilatory responses in rats: effects of ketanserin and 5-carboxamidotryptamine. Am. J. Physiol. 277, R658–666.
    PubMed CAS Google Scholar
  13. McGuire, M., Zhang, Y., White, D. P. and Ling, L. (2004) Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R334–341.
    PubMed CAS Google Scholar
  14. Kirby, G. C. and McQueen, D. S. (1984) Effects of the antagonists MDL 72222 and ketanserin on responses of cat carotid body chemoreceptors to 5-hydroxytryptamine. Br. J. Pharmacol. 83, 259–269.
    PubMed CAS Google Scholar
  15. Fu, X. W., Nurse, C. A., Wong V., and Cutz, E. (2002) Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J. Physiol. 539, 503–510.
    Article PubMed CAS Google Scholar
  16. Farber, H. W. and Loscalzo, J. (2004) Pulmonary arterial hypertension. N. Engl J. Med. 351, 1655–1665.
    Article PubMed CAS Google Scholar
  17. Hervé, P., Drouet, L., Dosquet, C., et al. (1990) Primary pulmonary hypertension in a patient with a familial platelet storage pool disease: role of serotonin. Am. J. Med. 89, 117–120.
    Article PubMed Google Scholar
  18. Hervé, P., Launay, J. M., Scrobohaci, M. L., et al. (1995) Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 1995. 99, 249–254.
    Article PubMed Google Scholar
  19. Kéreveur, A., Callebert, J., Humbert, M., et al. (2000) High plasma serotonin levels in primary pulmonary hypertension: effect of long-term epoprostenol (Prostacyclin) therapy. Arterioscler. Thromb. Vasc. Biol. 20, 2233–2239.
    PubMed Google Scholar
  20. Kentera, D., Susic, D., Veljkovic, V., Tucakovic, G., and Koko, V. (1988) Pulmonary artery pressure in rats with hereditary platelet function defect. Respiration 54, 110–114.
    Article PubMed CAS Google Scholar
  21. Sato, K., Webb, S., Tucker, A., et al. (1992) Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am. Rev. Respir. Dis. 145, 793–797.
    PubMed CAS Google Scholar
  22. Vane, J. R. (1957) A sensitive method for the assay of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 12, 344–349.
    PubMed CAS Google Scholar
  23. McDonald, T. P., Cottrell, M., and Clift, R. (1978) Effects of short-term hypoxia on platelet counts of mice. Blood 51, 165–175.
    PubMed CAS Google Scholar
  24. McDonald, T. P., Cottrell, M. B., Steward, S. A., Clift, R. E., Swearingen C. J., and Jackson, C. W. (1992) Comparison of platelet production in two strains of mice with different modal megakaryocyte DNA ploidies after exposure to hypoxia. Exp. Hematol. 20, 51–56.
    PubMed CAS Google Scholar
  25. Li, N., Wallen, N. H., Ladjevardi, M., and Hjemdahl, P. (1997) Effects of serotonin on platelet activation in whole blood. Blood Congul. Fibrinolysis 8, 517–523.
    Article CAS Google Scholar
  26. Rostagno, C., Prisco, D., Boddi, M., and Poggesi, L. (1991) Evidence for local platelet activation in pulmonary vessels in patients with pulmonary hypertension secondary to chronic obstructive pulmonary disease. Eur. Respir J. 4, 147–151.
    PubMed CAS Google Scholar
  27. Steele, P., Ellis, Jr., J. H., Weily, H. S., and Genton, E. (1977) Platelet survival time in patients with hypoxemia and pulmonary hypertension. Circulation 55, 660–661.
    PubMed CAS Google Scholar
  28. Keith, I. M., Will, J. A., Huxtable, R. J., and Weir, K. (1987) Anti-platelet agents reduce morphological changes of chronic hypoxic pulmonary hypertension. Histol. Histopathol. 2, 203–206.
    PubMed CAS Google Scholar
  29. Fanburg, B. L. and Lee, S. L. (2000) A role for the serotonin transporter in hypoxia-induced pulmonary hypertension. J. Clin. Invest. 105, 1521–1523.
    PubMed CAS Google Scholar
  30. Cook, E. H., Jr., Fletcher, K. E., Wainwright, M., Marks, N., Yan S. Y., and Leventhal, B. L. (1994) Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor. J. Neurochem. 63, 465–469.
    Article PubMed CAS Google Scholar
  31. De Chaffoy de Courcelles, D. and De Clerck, F. (1990) The human platelet 5-HT2-receptor: an up-date, in Cardiovascular Pharmacology of 5-Hydroxytryptamine (Saxena, P. R., Wallis, D. I., Wouters, W., and Bevan, P., Eds.). Kluwer, Dordrecht: pp. 445–457.
    Google Scholar
  32. Davidson, C. and Stamford, J. A. (1996) Serotonin efflux in the rat ventral lateral geniculate nucleus assessed by fast cyclic voltammetry is modulated by 5-HT1B and 5-HT1D autoreceptors. Neuropharmacology 35, 1627–1634.
    Article PubMed CAS Google Scholar
  33. Eddahibi, S., Fabre, V., Boni, C., Martres, M. P., Raffestin, B., Hamon M., and Adnot, S. (1999) Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. circ. Res. 84, 329–336.
    PubMed CAS Google Scholar
  34. Bhat, G. B. and Block, E. R. (1990) Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell plasma membrane vesicle. Am. J. Respir. Cell Mol. Biol. 3, 363–367.
    PubMed CAS Google Scholar
  35. MacLean, M. R., Deuchar, G. A., Hicks, M. N., et al. (2004) Overexpression of the 5-hydroxytryptamine transporter gene: effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension. Circulation 109, 2150–2155.
    Article PubMed CAS Google Scholar
  36. Lee, S. L., Wang, W. W., Moore, B. J., and Fanburg, B. L. (1991) Dual effect of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture. Circ Res. 68, 1362–1368.
    PubMed CAS Google Scholar
  37. Marcos, E., Adnot, S., Pham, M. H., et al. (2003) Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am. J. Respir. Crit. Care Med. 168, 487–493.
    Article PubMed Google Scholar
  38. Pitt, B. R., Weng, W., Steve, A. R., Blakely, R. D., Reynolds, I., and Davies, P. (1994) Serotonin increases DNA synthesis in rat proximal and distal pulmonary vascular smooth muscle cells in culture. Am. J. Physiol. 266, L178–186.
    PubMed CAS Google Scholar
  39. Sanchez, C. and Hyttel, J. (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell. Mol. Neurobiol. 19, 467–489.
    Article PubMed CAS Google Scholar
  40. Morecroft, I., Loughlin, L., Nilsen, M. J., et al. (2005) Functional interactions between 5-hydroxytryptamine receptors and the serotonin transporter in pulmonary arteries. J. Pharmacol. Exp. Ther. 313, 539–548.
    Article PubMed CAS Google Scholar
  41. Ni, W., Wilhelm, C. S., Bader, M., Murphy, D. L., Lookingland, K. J., and Watts, S. W. (2005). (+)-Norfenfluramine-induced arterial contraction is not dependent on endogenous 5-HT or 5-HTT. J. Pharmacol. Exp. Ther. 314, 953–960.
    Article PubMed CAS Google Scholar
  42. Rabinovitch, M. (2001) Linking a serotonin transporter polymorphism to vascular smooth muscle proliferation in patients with primary pulmonary hypertension. J. Clin. Invest. 108, 1109–1111.
    Article PubMed CAS Google Scholar
  43. Eddahibi, S., Hanoun, N., Lanfumey, L., et al. (2000) Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest. 105, 1555–1562.
    PubMed CAS Google Scholar
  44. Jeffery, T. K. and Wanstall, J. C. (2001) Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol. Ther. 92, 1–20.
    Article PubMed CAS Google Scholar
  45. Keegan, A., Morecroft, I., Smillie, D., Hicks M. N., and MacLean, M. R. (2001) Contribution of the 5-HT1B receptor to hypoxia-induced pulmonary hypertension. Converging evidence using 5-HT1B-receptor knockout mice and the 5-HT1B/1D-receptor antagonist GR127935. Circ. Res. 89, 1231–1229.
    Article PubMed CAS Google Scholar
  46. Angeles, D. M., Williams, J., Purdy, R. E., Zhang L., and Pearce, W. J. (2001) Effects of maturation and acute hypoxia on receptor-IP(3) coupling in ovine common carotid arteries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R410–417.
    PubMed CAS Google Scholar
  47. Angeles, D. M., Williams, J., Zhang, L., and Pearce, W. J. (2000) Acute hypoxia modulates 5-HT receptor density and agonist affinity in fetal and adult ovine carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 279, H502–510.
    PubMed CAS Google Scholar
  48. Launay, J. M., Hervé, P., Peoćh, K., et al. (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary monary hypertension. Nat. Med. 2002. 8, 1129–1135.
    Article PubMed CAS Google Scholar
  49. Tournois, C., Mutel, V., Manivet, P., Launay J. M., and Kellermann, O. (1998) Cross-talk between 5-hydroxytryptamine receptors in a serotonergic cell line. Involvement of arachidonic acid metabolism. J. Biol. Chem. 273, 17,498–17,503.
    Article CAS Google Scholar
  50. Launay, J. M., Schneider, B., Loric, S., Da Prada, M. and Kellermann, O. (2006) Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J. 20, 1843–1854.
    Article PubMed CAS Google Scholar
  51. Hampl, V. and Herget, J. (2000) Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol. Rev. 80, 1337–1372.
    PubMed CAS Google Scholar
  52. Ishida, T., Kawashima, S., Hirata K., and Yokoyama, M. (1998) Nitric oxide is produced via 5-HT1B and 5-HT2B receptor activation in human coronary artery endothelial cells. Kobe J. Med. Sci. 44, 51–63.
    PubMed CAS Google Scholar
  53. Glusa, E. and Pertz, H. H. (2000) Further evidence that 5-HT-induced relaxation of pig pulmonary artery is mediated by endothelial 5-HT2B receptors. Br. J. Pharmacol. 130, 692–698.
    Article PubMed CAS Google Scholar
  54. Matsuda, H., Li, Y., and Yoshikawa, M. (2000) Possible involvement of 5-HT and 5-HT2 receptors in acceleration of gastrointestinal transit by escin Ib in mice. Life Sci. 66, 2233–2238.
    Article PubMed CAS Google Scholar
  55. Miller, K. J. and Gonzalez, H. A. (1998) Serotonin 5-HT2A receptor activation inhibits cytokine-stimulated inducible nitric oxide synthase in C6 glioma cells. Ann. N Y Acad Sci. 861, 169–173.
    Article PubMed CAS Google Scholar
  56. Fozard, J. R. (1995) The 5-hydroxytryptamine-nitric oxide connection: the key link in the initiation of migraine? Arch. Int. Pharmacodyn. Ther. 329, 111–119.
    PubMed CAS Google Scholar
  57. Manivet, P., Mouillet-Richard, S., Callebert, J., et al. (2000) PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor. J. Biol. Chem. 275, 9324–9331.
    Article PubMed CAS Google Scholar
  58. Grewal, J. S., Mukhin, Y. V., Garnovskaya, M. N., Raymond, J. R., and Greene, E. L. (1999) Serotonin 5-HT2A receptor induces TGF-betal expression in mesangial cells via ERK: proliferative and fibrotic signals. Am. J. Physiol. 276, F922–930.
    PubMed CAS Google Scholar
  59. Mossner, R., Dringen, R., Persico, A. M., et al. (2002) Increased hippocampal DNA oxidation in serotonin transporter deficient mice. J. Neural. Transm. 109, 557–565.
    Article PubMed CAS Google Scholar
  60. Pietri, M., Schneider, B., Mouillet-Richard, S., et al. (2005) Reactive oxygen species-dependent TNF-alpha converting enzyme activation trough stimulation of 5-HT2B and alpha1D autoreceptors in neuronal cells. FASEB J. 19, 1078–1087.
    Article PubMed CAS Google Scholar
  61. Nebigil, C. G., Etienne, N., Messaddeq N, and Maroteaux, L. (2003) Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B-receptor signaling. FASEB J. 17, 1373–1375.
    PubMed CAS Google Scholar
  62. Blanpain, C., Le Poul, E., Parma, J. et al. (2003) Serotonin 5-HT2B receptor loss of function mutation in a patient with fenfluramine-associated primary pulmonary hypertension. Cardiovasc. Res. 60, 518–528.
    Article PubMed CAS Google Scholar
  63. Deraet, M., Manivet, P., Janoshazi, A., et al. (2005) The natural mutation encoding a C terminus-truncated 5-Hydroxytryptamine2B receptor is a gain of proliferative functions. Mol. Pharmacol. 67, 983–991.
    Article PubMed CAS Google Scholar
  64. Kitamura, K., Singer, W. D., Star, R. A., Muallem, S., and Miller, R. T. (1996) Induction of inducible nitric-oxide synthase by the heterotrimeric G protein Galpha13. J. Biol. Chem. 271, 7412–7415.
    Article PubMed CAS Google Scholar
  65. Nebigil, C. G., Launay, J.-M., Hickel, P., Tournois, C., and Maroteaux, L. (2000) 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: cross talk with tyrosine kinase pathways. Proc. Natl. Acad. Sci. USA 97, 2591–2596.
    Article PubMed CAS Google Scholar
  66. Nagao, M., Kaziro, Y., and Itoh, H. (1999) The Src family tyrosine kinase is involved in Rho-dependent activation of c-Jun N-terminal kinase by Galpha12. Oncogene 18, 4425–4434.
    Article PubMed CAS Google Scholar
  67. Fagan, K. A., Oka, M., Bauer, N. R., et al. (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L656–664.
    Article PubMed CAS Google Scholar
  68. Rondelet, B., Van Beneden, R., Kerbaul, F., et al. (2003) Expression of the serotonin 1b receptor in experimental pulmonary hypertension. Eur. Respir. J. 22, 408–412.
    Article PubMed CAS Google Scholar
  69. Abenhaim, L., Moride, Y., Brenot, F., et al. (1996) Appetitesuppressant drugs and the risk of primary pulmonary hypertension. International primary pulmonary hypertension study group. N. Engl. J. Med. 335, 609–616.
    Article PubMed CAS Google Scholar
  70. Fitzgerald, L. W., Burn, T. C., Brown, B. S., et al. (2000) Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol. Pharmacol. 57, 75–81.
    PubMed CAS Google Scholar
  71. Rothman, R. B., Baumann, M. H., Savage, J. E., et al. (2000) Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102, 2836–2841.
    PubMed CAS Google Scholar
  72. Loscalzo, J. (2001) Genetic clues to the cause of primary pulmonary hypertension. N. Engl. J. Med. 345, 367–371.
    Article PubMed CAS Google Scholar
  73. Frid, M. G., Dempsey, E. C., Durmowicz, A. G., and Stenmark, K. R. (1997) Smooth muscle cell heterogeneity in pulmonary and systemic vessels. Importance in vascular disease. Arterioscler. Thromb. Vasc. Biol. 17, 1203–1209.
    PubMed CAS Google Scholar
  74. Lee, S. L., Wang, W. W., Lanzillo, J. J., and Fanburg, B. L. (1994) Regulation of serotonin-induced DNA synthesis of bovine pulmonary artery smooth muscle cells. Am. J. Physiol. 266, L53–60.
    PubMed CAS Google Scholar
  75. Fanburg, B. L. and Lee, S. L. (1997) A new role for an old molecule: serotonin as a mitogen. Am. J. Physiol. 272, L795–806.
    PubMed CAS Google Scholar
  76. Madden, M. C., Vender, R. L., and Friedman, M. (1986) Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. Prostaglandins 31, 1049–1062.
    Article PubMed CAS Google Scholar
  77. Rothman, A., Wolner, B., Button D, and Taylor, P. (1994) Immediate-early gene expression in response to hypertrophic and proliferative stimuli in pulmonary arterial smooth muscle cells. J. Biol. Chem. 269, 6399–6404.
    PubMed CAS Google Scholar
  78. Katayose, D., Ohe, M., Yamauchi, K., et al. (1993) Increased expression of PDGFA-and B-chain genes in rat lungs with hypoxic pulmonary hypertension. Am. J. Physiol. 264, L100–106.
    PubMed CAS Google Scholar
  79. Perkett, E. A., Pelton, R. W., Meyrick, B., Gold, L. I., and Miller, D. A. (1994) Expression of transforming growth factor-beta mRNAs and proteins in pulmonary vascular remodeling in the sheep air embolization model of pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 11, 16–24.
    PubMed CAS Google Scholar
  80. Humbert, M., Monti, G., Brenot, F., et al. (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 151, 1628–1631.
    PubMed CAS Google Scholar
  81. Wang, X., Wang, B. R., Duan, X. L., et al. (2002) Strong expression of interleukin-1 receptor type I in the rat carotid body. J. Histochem. Cytochem. 50, 1677–1684.
    PubMed CAS Google Scholar
  82. Cooper, A. L. and Beasley, D. (1999) Hypoxia stimulates proliferation and interleukin-1alpha production in human vascular smooth muscle cells. Am. J. Physiol. 277, H1326–1337.
    PubMed CAS Google Scholar
  83. Yan, S. F., Tritto, I., Pinsky, D., et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J. Biol. Chem. 270, 11,463–11,471.
  84. Jaffré, F., Callebert, J., Sarre, A., et al. (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 110, 969–974.
    Article PubMed CAS Google Scholar
  85. Thompson, K. and Rabinovitch M. (1996) Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular-matrix bound basic fibrobalst growth factor. J. Cell Physiol 166, 495–505.
    Article PubMed CAS Google Scholar
  86. Maruyama, K., Ye, C. L. Woo, M., et al. (1991) Chronic hypoxic pulmonary hypertension in rats and increased elastolytic activity. Am. J. Physiol. 261, H1716–1726.
    PubMed CAS Google Scholar
  87. Novotna, J. and Herget, J. (1998) Exposure to chronic hypoxia induces qualitative changes of collagen in the walls of peripheral pulmonary arteries. Life Sci. 62, 1–12.
    Article PubMed CAS Google Scholar
  88. Wilcox, B. D., Rydelek-Fitzgerald, L., and Jeffrey, J. J. (1994) Regulation of uterine collagenase gene expression: interactions between serotonin and progesterone. Mol. Cell Endocrinol. 101, 67–75.
    Article PubMed CAS Google Scholar
  89. Semenza, G. L. (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1–3.
    Article PubMed CAS Google Scholar
  90. Zhong, H., De Marzo, A. M., Laughner, E., et al. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835.
    PubMed CAS Google Scholar
  91. Semenza, G. L. (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem. Pharmacol. 59, 47–53.
    Article PubMed CAS Google Scholar
  92. Yu, A. Y., Shimoda, L. A., Iyer, N. V., et al. (1999) Semenza, Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J. Clin. Invest. 103, 691–696.
    Article PubMed CAS Google Scholar
  93. Page, E. L., Robitaille, G. A., Pouyssegur, J., and Richard, D. E. (2002). Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J. Biol. Chem. 277, 48,403–48,409.
    Article CAS Google Scholar
  94. Regula, K. M., Baetz, D., and Kirshenbaum, L. A. (2004) Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes. Circulation 110, 3795–3802.
    Article PubMed CAS Google Scholar
  95. Matsuda, A., Suzuki, Y., Honda, G., et al. (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22, 3307–3318.
    Article PubMed CAS Google Scholar
  96. Hagen T, Taylor, C. T., Lam, F., and Moncada, S. (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302, 1975–1978.
    Article PubMed CAS Google Scholar
  97. Machado, R. D., Kochler, R., Glissmeyer, E., et al. (2006) Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 173, 793–797.
    Article PubMed CAS Google Scholar

Download references