Neural activity and survival in the developing nervous system (original) (raw)
Oppenheim R. W. (1991) Cell death during development of the nervous system. Ann. Rev. Neurosci.14, 453–501. ArticlePubMedCAS Google Scholar
Purves D. and Lichtman J. W. (1985) Principles of Neural Development. Sinauer Associates, Inc., Sunderland, MA. Google Scholar
Lewin G. R. and Barde Y. A. (1996) Physiology of the neurotrophins. Ann. Rev. Neurosci.19, 289–317. Article Google Scholar
Kaplan D. R. and Miller F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol.10, 381–391. ArticlePubMedCAS Google Scholar
Putcha G. V., Deshmukh M., and Johnson E. M., Jr. (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J. Neurosci.19, 7476–7485. PubMedCAS Google Scholar
Ghosh A., Carnahan J., and Greenberg M. E. (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science263, 1618–1623. ArticlePubMedCAS Google Scholar
Meyer-Franke A., Wilkinson G. A., Kruttgen A., Hu M., Munro E., Hanson M. G., Jr., et al. (1998) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron21, 681–693. ArticlePubMedCAS Google Scholar
Vaillant A. R., Mazzoni I., Tudan C., Boudreau M., Kaplan D. R., and Miller F. D. (1999) Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol.146, 955–966. ArticlePubMedCAS Google Scholar
Linden R. (1994) The survival of developing neurons: a review of afferent control. Neuroscience58, 671–682. ArticlePubMedCAS Google Scholar
Catsicas M., Pequignot Y., and Clarke P. G. (1992) Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development. J. Neurosci.12, 4642–4650. PubMedCAS Google Scholar
Galli-Resta L., Ensini M., Fusco E., Gravina A., and Margheritti B. (1993) Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat. J. Neurosci.13, 243–250. PubMedCAS Google Scholar
Rubel E. W., Hyson R. L., and Durham D. (1990) Afferent regulation of neurons in the brain stem auditory system. J. Neurobiol.21, 169–196. ArticlePubMedCAS Google Scholar
Lachica E. A., Kato B. M., Lippe W. R., and Rubel E. W. (1998) Glutamatergic and GABAergic agonists increase in avian cochlear nucleus neurons. J. Neurobiol.37, 321–337. ArticlePubMedCAS Google Scholar
Ikonomidou C., Bosch F., Miksa M., Bittigau P., Vockler J., Dikranian K., et al. (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science283, 70–74. ArticlePubMedCAS Google Scholar
Ikonomidou C., Ishimaru M. J., Wozniak D. F., Koch C., Bittigau P., Price M. T., et al. (2000) Ethanol-induced apoptotic neurodegeneration and the fetal alcohol syndrome. Science287, 1056–1060. ArticlePubMedCAS Google Scholar
Verhage M., Maia A. S., Plomp J. J., Brussaard A. B., Heeroma J. H., Vermeer H., et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science287, 864–868. ArticlePubMedCAS Google Scholar
Heimer L. and Kalil R. (1978) Rapid transneuronal degeneration and death of cortical neurons following removal of the olfactory bulb in adult rats. J. Comp. Neurol.178, 559–609. ArticlePubMedCAS Google Scholar
Friedman B. and Price J. L. (1986) Plasticity in the olfactory cortex: age-dependent effects of deafferentation. J. Comp. Neurol.246, 1–19. ArticlePubMedCAS Google Scholar
Friedman B. and Price J. L. (1986) Age-dependent cell death in the olfactory cortex: lack of transneuronal degeneration in neonates. J. Comp. Neurol.246, 20–31. ArticlePubMedCAS Google Scholar
Borsello T., Di Luzio A., Ciotti M. T., Calissano P., and Galli C. (2000) Granule neuron DNA damage following deafferentation in adult rats cerebellar cortex: a lesion model. Neuroscience95, 163–171. ArticlePubMedCAS Google Scholar
Fawcett J. P., Bamji S. X., Causing C. G., Aloyz R., Ase A. R., Reader T. A., et al. (1998) Functional evidence that BDNF is an anterograde neuronal trophic factor in the CNS. J. Neurosci.18, 2808–2821. PubMedCAS Google Scholar
Zhou X. F. and Rush R. A. (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience74, 945–953. Google Scholar
Scott B. S. (1977) The effect of elevated potassium on the time course of neuron survival in cultures of dissociated dorsal root ganglia. J. Cell. Physiol.91, 305–316. ArticlePubMedCAS Google Scholar
Eichler M. E., Dubinsky J. M., and Rich K. M. (1992) Relationship of intracellular calcium to dependence on nerve growth factor in dorsal root ganglion neurons in cell culture. J. Neurochem.58, 263–269. ArticlePubMedCAS Google Scholar
Bennett M. R. and White W. (1979) The survival and development of cholinergic neurons in potassium-enriched media. Brain Res.173, 549–553. ArticlePubMedCAS Google Scholar
Collins F., Schmidt M. F., Guthrie P. B., and Kater S. B. (1991) Sustained increase in intracellular calcium promotes neuronal survival. J. Neurosci.11, 2582–2587. PubMedCAS Google Scholar
Ling D. S., Petroski R. E., and Geller H. M. (1991) Both survival and development of spontaneously active rat hypothalamic neurons in dissociated culture are dependent on membrane depolarization. Brain Res. Dev. Brain. Res.59, 99–103. ArticlePubMedCAS Google Scholar
Cohen-Cory S., Dreyfus C. F., and Black I. B. (1991) NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J. Neurosci.11, 462–471. PubMedCAS Google Scholar
Lipton S. A. (1986) Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc. Natl. Acad. Sci. USA83, 9774–9778. ArticlePubMedCAS Google Scholar
Meyer-Franke A., Kaplan M. R., Pfrieger F. W., and Barres B. A. (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron15, 805–819. ArticlePubMedCAS Google Scholar
Xu W., Cormier R., Fu T., Covey D. F., Isenberg K. E., Zorumski C. F., and Mennerick S. J. (2000) Slow death of postnatal hippocampal neurons by GABAA receptor overactivation. J. Neurosci.20, 3147–3156. PubMedCAS Google Scholar
Baker R. E., Ruijter J. M., and Bingmann D. (1991) Elevated potassium prevents neuronal death but inhibits network formation in neocortical cultures. Int. J. Dev. Neurosci.9, 339–345. ArticlePubMedCAS Google Scholar
Koike T., Martin D. P., and Johnson E. M., Jr. (1989) Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc. Natl. Acad. Sci. USA86, 6421–6425. ArticlePubMedCAS Google Scholar
Collins F. and Lile J. D. (1989) The role of dihydropyridine-sensitive voltage-gated calcium channels in potassium-mediated neuronal survival. Brain Res.502, 99–108. ArticlePubMedCAS Google Scholar
Franklin J. L. and Johnson E. M., Jr. (1992) Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci.15, 501–508. ArticlePubMedCAS Google Scholar
Lampe P. A., Cornbrooks E. B., Juhasz A., Johnson E. M., Jr., and Franklin J. L. (1995) Suppression of programmed neuronal death by a thapsigargin-induced Ca2+ influx. J. Neurobiol.26, 205–212. ArticlePubMedCAS Google Scholar
Franklin J. L., Sanz-Rodriguez C., Juhasz A., Deckwerth T. L., and Johnson E. M., Jr. (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J. Neurosci.15, 643–664. PubMedCAS Google Scholar
Tolkovsky A. M., Walker A. E., Murrell R. D., and Suidan H. S. (1990) Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons. J. Cell Biol.110, 1295–1306. ArticlePubMedCAS Google Scholar
Zorumski C. F. and Olney J. W. (1993) Excitotoxic neuronal damage and neuropsychiatric disorders. Pharmacol. Ther.59, 145–162. ArticlePubMedCAS Google Scholar
Choi D. W. (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Prog. Brain Res.100, 47–51. PubMedCAS Google Scholar
Ankarcrona M. (1998) Glutamate induced cell death: apoptosis or necrosis? Prog. Brain Res.116, 265–272. ArticlePubMedCAS Google Scholar
Burek M. J. and Oppenheim R. W. (1999) Cellular interactions that regulate programmed cell death in the developing nervous system, in Cell Death and Diseases of the Nervous System (Koliatsos V. E. and Ratan R. R., eds.), Humana Press, Totowa, N. J. pp. 145–179. Google Scholar
Koike T. and Tanaka S. (1991) Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Ca2+. Proc. Natl. Acad. Sci. USA88, 3892–3896. ArticlePubMedCAS Google Scholar
Larmet Y., Dolphin A. C., and Davies A. M. (1992) Intracellular calcium regulates the survival of early sensory neurons before they become dependent on neurotrophic factors. Neuron9, 563–574. ArticlePubMedCAS Google Scholar
Tong J. X., Eichler M. E., and Rich K. M. (1996) Intracellular calcium levels influence apoptosis in mature sensory neurons after trophic factor deprivation. Exp. Neurol.138, 45–52. Article Google Scholar
Tao X., Finkbeiner S., Arnold D. B., Shaywitz A. J., and Greenberg M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron20, 709–726. ArticlePubMedCAS Google Scholar
Bhave S. V., Ghoda L., and Hoffman P. L. (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J. Neurosci.19, 3277–3286. PubMedCAS Google Scholar
Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem.72, 1283–1293. ArticlePubMedCAS Google Scholar
Gozes I., Davidson A., Gozes Y., Mascolo R., Barth R., Warren D., et al. (1997) Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Brain Res. Dev. Brain Res.99, 167–175. ArticlePubMedCAS Google Scholar
Glazner G. W., Camandola S., and Mattson M. P. (2000) Nuclear factor-kappaB mediates the cell survival-promoting action of activity-dependent neurotrophic factor peptide-9. J. Neurochem.75, 101–108. ArticlePubMedCAS Google Scholar
Sah P., Hestrin S., and Nicoll R. A. (1989) Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science246, 815–818. ArticlePubMedCAS Google Scholar
Zorumski C. F., Mennerick S., and Que J. (1996) Modulation of excitatory synaptic transmission by low concentrations of glutamate in cultured rat hippocampal neurons. J. Physiol. (Lond.)494, 465–477. Google Scholar
Gallo V., Kingsbury A., Balazs R., and Jorgensen O. S. (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci.7, 2203–2213. PubMedCAS Google Scholar
D’Mello S. R., Galli C., Ciotti T., and Calissano P. (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl. Acad. Sci. USA90, 10,989–10,993. ArticleCAS Google Scholar
Kubo T., Nonomura T., Enokido Y., and Hatanaka H. (1995) Brain-derived neurotrophic factor (BDNF) can prevent apoptosis of rat cerebellar granule neurons in culture. Brain Res. Dev. Brain Res.85, 249–258. ArticlePubMedCAS Google Scholar
Suzuki K. and Koike T. (1997) Brain-derived neurotrophic factor suppresses programmed death of cerebellar granule cells through a posttranslational mechanism. Mol. Chem. Neuropathol.30, 101–124. PubMedCAS Google Scholar
Toescu E. C. (1998) Apoptosis and cell death in neuronal cells: where does Ca2+ fit in? Cell Calcium24, 387–403. ArticlePubMedCAS Google Scholar
Blair L. A., Bence-Hanulec K. K., Mehta S., Franke T., Kaplan D., and Marshall J. (1999) Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J. Neurosci.19, 1940–1951. PubMedCAS Google Scholar
Kohara K., Ono T., Tominaga-Yoshino K., Shimonaga T., Kawashima S., and Ogura A. (1998) Activity-dependent survival and enhanced turnover of calcium in cultured rat cerebellar granule neurons. Brain Res.809, 231–237. ArticlePubMedCAS Google Scholar
Ono T., Kudo Y., Kohara K., Kawashima S., and Ogura A. (1997) Activity-dependent survival of rat cerebellar granule neurons is not associated with sustained elevation of intracellular Ca2+. Neurosci. Lett.228, 123–126. ArticlePubMedCAS Google Scholar
Yu S. P., Yeh C. H., Sensi S. L., Gwag B. J., Canzoniero L. M., Farhangrazi Z. S., et al. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science278, 114–117. ArticlePubMedCAS Google Scholar
Yu S. P., Yeh C., Strasser U., Tian M., and Choi D. W. (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science284, 336–339. ArticlePubMedCAS Google Scholar
Nijhawan D., Honarpour N., and Wang X. (2000) Apoptosis in neural development and disease. Ann. Rev. Neurosci.23, 73–87. ArticlePubMedCAS Google Scholar
Kuan C. Y., Roth K. A., Flavell R. A., and Rakic P. (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci.23, 291–297. ArticlePubMedCAS Google Scholar
Nicholson D. W. (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff.6, 1028–1042. ArticleCAS Google Scholar
Sadoul R. (1998) Bcl-2 family members in the development and degenerative pathologies of the nervous system. Cell Death Diff.5, 805–815. ArticleCAS Google Scholar
Datta S. R., Brunet A., and Greenberg M. E. (1999) Cellular survival: a play in three Akts. Genes Dev.13, 2905–2927. ArticlePubMedCAS Google Scholar
Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., and Greenberg M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241. ArticlePubMedCAS Google Scholar
Crowder R. J. and Freeman R. S. (1998) Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci.18, 2933–2943. PubMedCAS Google Scholar
Hetman M., Kanning K., Cavanaugh J. E., and Xia Z. (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem.274, 22,569–22,580. ArticleCAS Google Scholar
Ikegami K. and Koike T. (2000) Membrane depolarization-mediated survival of sympathetic neurons occurs through both phosphatidylinositol 3-kinase- and CaM kinase II-dependent pathways. Brain Res.866, 218–226. ArticlePubMedCAS Google Scholar
Miller T. M., Tansey M. G., Johnson E. M., Jr., and Creedon D. J. (1997) Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization-and insulin-like growth factor I-mediated survival of cerebellar granule cells. J. Biol. Chem.272, 9847–9853. ArticlePubMedCAS Google Scholar
Yano, S., Tokumitsu H., and Soderling T. R. (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature396, 584–587. ArticlePubMedCAS Google Scholar
Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., et al. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science275, 661–665. ArticlePubMedCAS Google Scholar
D’Mello S. R., Borodezt K., and Soltoff S. P. (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J. Neurosci.17, 1548–1560. PubMedCAS Google Scholar
Bence-Hanulec K. K., Marshall J., and Blair L. A. (2000) Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the α1 subunit on a specific tyrosine residue. Neuron27, 121–131. ArticlePubMedCAS Google Scholar
Mao Z., Bonni A., Xia F., Nadal-Vicens M., and Greenberg M. E. (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science286, 785–790. ArticlePubMedCAS Google Scholar
McConkey D. J. and Orrenius S. (1996) The role of calcium in the regulation of apoptosis. J. Leukoc. Biol.59, 775–783. Google Scholar
Wang H. G., Pathan, N., Ethell I. M., Krajewski S., Yamaguchi Y., Shibasaki F., et al. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science284, 339–343. ArticlePubMedCAS Google Scholar
Choi D. W. (1996) Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol.6, 667–672. Article Google Scholar
Dobbing J. and Sands J. (1979) Comparative aspects of the brain growth spurt. Early Hum. Dev.3, 79–83. ArticlePubMedCAS Google Scholar