Neuroadaptive responses in brainstem noradrenergic nucleic following chronic morphine exposure (original) (raw)
Abood L. (1984) Mechanisms of tolerance and dependence: an overview. NIDA Res. Monogr.54, 4–11. PubMedCAS Google Scholar
Kantak K. and Miczek K. (1988) Social, motor, and autonomic signs of morphine withdrawal: differential sensitivities to catecholaminergic drugs in mice. Psychopharmacology96, 468–476. ArticlePubMedCAS Google Scholar
Koob G. F., Maldonado R., and Stinus L. (1992) Neural substrates of opiate withdrawal. Trends Neurosci.15, 186–191. ArticlePubMedCAS Google Scholar
Williams J., Christie M., and Manzoni O. (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev.81, 299–343. PubMedCAS Google Scholar
Gold M. S., Pottash A. C., Extein I. L., and Kleber H. D. (1981) Neuroanatomical sites of action of clonidine in opiate withdrawal: the locus coeruleus connection. Progr. Clin. Biol. Res.71, 285–298. CAS Google Scholar
Garcia-Sevilla J., Ugedo L., Ulibarri I., Elizagarate E., and Guttierez M. (1984) Heroin addicts have increased platelet alpha2-adrenoceptor densities which correlate with the severity of the abstinence syndrome. Eur. J. Pharmacol.100, 131–132. ArticlePubMedCAS Google Scholar
Aghajanian G. K. and Wang Y. Y. (1986) Pertussis toxin blocks the outward currents evoked by opiate and alpha2-agonists in locus coeruleus neurons. Brain Res.371, 390–394. ArticlePubMedCAS Google Scholar
Aston-Jones G., Hirata H., and Akaoka H. (1997) Local opiate withdrawal in locus coeruleus in vivo. Brain Res.765, 331–336. ArticlePubMedCAS Google Scholar
Lane-Ladd S. B., Pineda J., Boundy V. A., Pfeuffer T., Krupinski J., Aghajanian G. K., and Nestler E. J. (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J. Neurosc.17, 7890–7901. CAS Google Scholar
Javelle N., Renaud B., and Lambas-Senas L. (1997) Monoamine metabolism in the locus coeruleus measured concurrently with behavior during opiate withdrawal: an in vivo microdialysis study in freely moving rats. J. Neurochem.68, 683–690. ArticlePubMedCAS Google Scholar
Dossin O., Hanoun N., and Zajac J. M. (1996) Involvement of locus coeruleus projections in opiate withdrawal but not in opiate tolerance in mice. Eur. J. Pharmacol.308, 271–274. Article Google Scholar
Rasmussen K., Kendrick W. T., Kogan J. H., and Aghajanian G. K. (1996) A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology15, 497–505. Article Google Scholar
Krystal J. H., Compere S., Nestler E. J., and Rasmussen K. (1996) Nimodipine reduction of naltrexone-precipitated locus coeruleus activation and abstinence behavior in morphine-dependent rats. Physiol. Behav.59, 863–866. Article Google Scholar
Maldonado R., Valverde O., Garbay C., and Roques B. P. (1995) Protein kinases in the locus coeruleus and periaqueductal gray matter are involved in the expression of opiate withdrawal. Naunyn Schmiedebergs Arch. Pharmacol.352, 565–575. ArticlePubMedCAS Google Scholar
Rasmussen K. (1995) The role of the locus coeruleus and N-methyl-D-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal. Neuropsychopharmacology13, 295–300. ArticlePubMedCAS Google Scholar
Kogan J. H. and Aghajanian G. K. (1995) Long-term glutamate desensitization in locus coeruleus neurons and its role in opiate withdrawal. Brain Res.689, 111–121. ArticlePubMedCAS Google Scholar
Chieng B. and Christie M. J. (1995) Lesions to terminals of noradrenergic locus coeruleus neurons do not inhibit opiate withdrawal behaviour in rats. Neurosci. Lett.186, 37–40. ArticlePubMedCAS Google Scholar
Aghajanian G. K., Kogan J. H., and Moghaddam B. (1994) Opiate withdrawal increases glutamate and aspartate efflux in the locus coeruleus: an in vivo microdialysis study. Brain Res.636, 126–130. ArticlePubMedCAS Google Scholar
Guitart X., Kogan J. H., Berhow M., Terwilliger R. Z., Aghajanian G. K., and Nestler E. J. (1993) Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals. Brain Res.611, 7–17. ArticlePubMedCAS Google Scholar
Maldonado R. and Koob G. F. (1993) Destruction of the locus coeruleus decreases physical signs of opiate withdrawal. Brain Res.605, 128–138. ArticlePubMedCAS Google Scholar
Kogan J. H., Nestler E. J., and Aghajanian G. K. (1992) Elevated basal firing rates and enhanced responses to 8-Br-cAMP in locus coeruleus neurons in brain slices from opiate-dependent rats. Eur. J. Pharmacol.211, 47–53. ArticlePubMedCAS Google Scholar
Akaoka H. and Aston-Jones G. (1991) Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J. Neurosci.11, 3830–3839. PubMedCAS Google Scholar
Grant S. J., Huang Y. H., and Redmond D. E., Jr. (1988) Behavior of monkeys during opiate withdrawal and locus coeruleus stimulation. Pharmacol. Biochem. Behav.30, 13–19. ArticlePubMedCAS Google Scholar
Guitart X., Thompson M. A., Mirante C. K., Greenberg M. E., and Nestler E. J. (1992) Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus. J. Neurochem.58, 1168–1171. ArticlePubMedCAS Google Scholar
Hayward M. D., Duman R. S., and Nestler E. J. (1990) Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Brain Res.525, 256–266. ArticlePubMedCAS Google Scholar
Rasmussen K., Beitner-Johnson D. B., Krystal J. H., Aghajanian G. K., and Nestler E. J. (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J. Neurosci.10, 2308–2317. PubMedCAS Google Scholar
Aghajanian G. (1978) Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal by clonidine. Nature (Lond). 276, 186–188. ArticleCAS Google Scholar
Silverstone P., Done C., and Sharp T. (1993) In vivo monoamine release during naloxone precipitated withdrawal. Neuropharmacol. Neurotoxicol.4, 1043–1045. CAS Google Scholar
Crawley J., Laverty R., and Roth R. (1979) Clonidine reversal of increased noradrenaline metabolite levels during morphine withdrawal. Eur. J. Pharmacol.57, 247–250. ArticlePubMedCAS Google Scholar
Christie M. J., Williams J. T., Osborne P. B., and Bellchambers C. E. (1997) Where is the locus in opioid withdrawal? Trends Pharmacol. Sci.18, 134–140. ArticlePubMedCAS Google Scholar
Caille S., Espejo E. F., Reneric J. P., Cador M., Koob G. F., and Stinus L. (1999) Total neurochemical lesion of noradrenergic neurons of the locus coeruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal. J. Pharmacol. Exp. Ther.290, 881–892. PubMedCAS Google Scholar
Delfs J., Zhu Y., Druhan J., and Aston-Jones G. (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature403, 430–434. ArticlePubMedCAS Google Scholar
Bullitt E. (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol.296, 517–530. ArticlePubMedCAS Google Scholar
Nye H. E. and Nestler E. J. (1996) Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol. Pharmacol.49, 636–645. Google Scholar
Aston-Jones G., Delfs J. M., Druhan J., and Zhu Y. (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann. NY Acad. Sci.877, 486–498. ArticlePubMedCAS Google Scholar
Chieng B., Keay K. A., and Christie M. J. (1995) Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal. Neurosci. Lett.183, 79–82. ArticlePubMedCAS Google Scholar
Stornetta R. L., Norton F. E., and Guyenet P. G. (1993) Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats. Brain Res.624, 19–28. ArticlePubMedCAS Google Scholar
Beckmann A. M., Matsumoto I., and Wilce P. A. (1995) Immediate early gene expression during morphine withdrawal. Neuropharmacology34, 1183–1189. ArticlePubMedCAS Google Scholar
Sagar S. M., Sharp F. R., and Curran T. (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science240, 1328–1331. ArticlePubMedCAS Google Scholar
Sagar S. M., Sharp F. R., and Curran T. (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science240, 1328–1331. ArticlePubMedCAS Google Scholar
Bullitt E. (1989) Induction of c-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res.493, 391–397. ArticlePubMedCAS Google Scholar
Van Bockstaele E. J., and Aston-Jones G. (1992) Collateralized projections from neurons in the rostral medulla to the nucleus locus coeruleus, the nucleus of the solitary tract and the periaqueductal gray. Neuroscience49, 653–668. ArticlePubMed Google Scholar
Ennis M., Aston-Jones G., and Shiekhattar R. (1992) Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res.598, 185–195. ArticlePubMedCAS Google Scholar
Ennis M. and Aston-Jones G. (1987) Two physiologically distinct populations of neurons in the ventrolateral medulla innervate the locus coeruleus. Brain Res.425, 275–282. ArticlePubMedCAS Google Scholar
Ennis M. and Aston-Jones G. (1988) Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J. Neurosci.8, 3644–3657. PubMedCAS Google Scholar
Ennis M. and Aston-Jones G. (1986) A potent excitatory input to the nucleus locus coeruleus from the ventrolateral medulla. Neurosci. Lett.71, 299–305. ArticlePubMedCAS Google Scholar
Zhang T., Feng Y., Rockhold R. W., and Ho I. K. (1994) Naloxone-precipitated morphine withdrawal increases pontine glutamate levels in the rat. Life Sci.55, PL25-PL31. ArticlePubMedCAS Google Scholar
Rasmussen K. and Aghajanian G. K. (1989) Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: attenuation by lesions of the nucleus paragigantocellularis. Brain Res.505, 346–350. ArticlePubMedCAS Google Scholar
Drolet G., Van Bockstaele E. J., and Aston-Jones G. (1992) Robust enkephalin innervation of the locus coeruleus from the rostral medulla. J. Neurosci.12, 3162–3174. PubMedCAS Google Scholar
Van Bockstaele E. J., Saunders A., Commons K. G., Liu X. B., and Peoples J. (2000) Evidence for coexistence of enkephalin and glutamate in axon terminals and cellular sites for functional interactions of their receptors in the rat locus coeruleus. J. Comp. Neurol.417, 103–114. ArticlePubMed Google Scholar
Abercrombie E. D. and Jacobs B. L. (1988) Systemic naloxone administration potentiates locus coeruleus noradenergic neuronal activity under stressful but not non-stressful conditions. Brain Res.441, 362–366. ArticlePubMedCAS Google Scholar
Williams J. T., Christie M. J., North R. A., and Roques B. P. (1987) Potentiation of enkephalin action by peptidase inhibitors in rat locus ceruleus in vitro. J. Pharmacol. Exp. Ther.243, 397–401. PubMedCAS Google Scholar
Azami J., Llewelyn M. B., and Roberts M. H. (1982) The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Pain12, 229–246. ArticlePubMedCAS Google Scholar
Ross C. A., Ruggiero D. A., Park D. H., Joh T. H., Sved A. F., Fernandez-Pardal J., Saavedra J. M., and Reis D. J. (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci.4, 474–494. PubMedCAS Google Scholar
Sun M. K., Yen C. T., and Blum P. S. (1984) Response properties and functional organization of neurons in midline regions of medullary reticular formation of cats. J. Neurophysiol.26, 961–979. Google Scholar
Baraban S. C., Stornetta R. L., and Guyenet P. G. (1995) Effects of morphine and morphine withdrawal on adrenergic neurons of the rat rostral ventrolateral medulla. Brain Res.676, 245–257. ArticlePubMedCAS Google Scholar
Rockhold R. W., Liu N. S., Coleman D., Commiskey S., Shook J., and Ho I. K. (2000) The nucleus paragigantocellularis and opioid withdrawal-like behavior. J. Biomed. Sci.7, 270–276. ArticlePubMedCAS Google Scholar
Nestler E. J., Erdos J. J., Terwilliger R., Duman R. S., and Tallman J. F. (1989) Regulation of G proteins by chronic morphine in the rat locus coeruleus. Brain Res.476, 230–239. ArticlePubMedCAS Google Scholar
Guitart X. and Nestler E. J. (1993) Second messenger and protein phosphorylation mechanisms underlying opiate addiction: studies in the rat locus coeruleus. Neurochem. Res.18, 5–13. ArticlePubMedCAS Google Scholar
Nestler E. J., Alreja M., and Aghajanian G. K. (1994) Molecular and cellular mechanisms of opiate action: studies in the rat locus coeruleus. Brain Res. Bull.35, 521–528. ArticlePubMedCAS Google Scholar
Koob G. F. and Nestler E. J. (1997) The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci.9, 482–497. PubMedCAS Google Scholar
Van Bockstaele E. J., Branchereau P., and Pickel V. M. (1995) Morphologically heterogeneous met-enkephalin terminals form synapses with tyrosine hydroxylase-containing dendrites in the rat nucleus locus coeruleus. J. Comp. Neurol.363, 423–438. ArticlePubMed Google Scholar
Van Bockstaele E. J. and Chan J. (1997) Electron microscopic evidence for coexistence of leucine5-enkephalin and gamma-aminobutyric acid in a subpopulation of axon terminals in the rat locus coeruleus region. Brain Res.746, 171–182. ArticlePubMed Google Scholar
Johnson A., Grunwald G., Peoples J., and Van Bockstaele E. J. (2000) Evidence for opioid projections from the rostral ventral medulla to the nucleus of the solitary tract in rat brain. Soc. Neurosci. Abstr.26, 1187. Google Scholar
Van Bockstaele E. J., Peoples J., Menko A. S., McHugh K., and Drolet G. (2000) Decreases in endogenous opioid peptides in the rat medullocoerulear pathway after chronic morphine treatment. J. Neurosci.20, 8659–8666. PubMed Google Scholar
Valentino R. J. and Wehby R. G. (1989) Locus ceruleus discharge characteristics of morphine-dependent rats: effects of naltrexone. Brain Res.488, 126–134. ArticlePubMedCAS Google Scholar
Valentino R. and Bockstaele E. V. (2001) Opposing regulation of the locus coeruleus by corticotropin releasing factor and opioids: potential for reciprocal interactions between stress and opioid sensitivity. Psychopharmacology, 10, p. 1007. Google Scholar
Hong J. S., McGinty J. F., Grimes L., Kanamatsu T., Obie J., and Mitchell C. L. (1988) Seizure-induced alterations in the metabolism of hippocampal opioid peptides suggest opioid modulation of seizure-related behaviors. NIDA Res. Monogr.82, 48–66. PubMedCAS Google Scholar
Hong J. S., McGinty J. F., Lee P. H., Xie C. W., and Mitchell C. L. (1993) Relationship between hippocampal opioid peptides and seizures. Progr. Neurobiol.40, 507–528. ArticleCAS Google Scholar
Tejwani G. A., Rattan A. K., Koo K. L., Matwyshyn G. A., and Bhargava H. N. (1994) Methionine-enkephalin concentrations in discrete brain regions, spinal cord, pituitary gland and peripheral tissues of U-50,488H-tolerant and abstinent rats. Pharmacology48, 216–225. ArticlePubMedCAS Google Scholar
Gudehithlu K. P., Tejwani G. A., and Bhargava H. N. (1991) Beta-endorphin and methionine-enkephalin levels in discrete brain regions, spinal cord, pituitary gland and plasma of morphine tolerant-dependent and abstinent rats. Brain Res.553, 284–290. ArticlePubMedCAS Google Scholar
Gudehithlu K. P. and Bhargava H. N. (1995) Modulation of preproenkephalin mRNA levels in brain regions and spinal cord of rats treated chronically with morphine. Peptides16, 415–419. ArticlePubMedCAS Google Scholar
Yukhananov R. Y. and Handa R. J. (1997) Effect of morphine on proenkephalin gene expression in the rat brain. Brain Res. Bull.43, 349–356. ArticlePubMedCAS Google Scholar
Childers S. R., Simantov R., and Snyder S. H. (1977) Enkephalin: radioimmunoassay and radioreceptor assay in morphine dependent rats. Eur. J. Pharmacol.46, 289–293. ArticlePubMedCAS Google Scholar
Fratta W., Yang H. Y., Hong J., and Costa E. (1977) Stability of Met-enkephalin content in brain structures of morphine-dependent or foot shock-stressed rats. Nature268, 452–453. ArticlePubMedCAS Google Scholar
Wesche D., Hollt V., and Herz A. (1977) Radioimmunoassay of enkephalins. Regional distribution in rat brain after morphine treatment and hypophysectomy. Naunyn Schmiedebergs Arch. Pharmacol.301, 79–82. ArticlePubMedCAS Google Scholar
Comb M., Birnberg N. C., Seasholtz A., Herbert E., and Goodman H. M. (1986) A cyclic AMP- and phorbol ester-inducible DNA element. Nature323, 353–356. ArticlePubMedCAS Google Scholar
Van Nguyen T., Kobierski L., Comb M., and Hyman S. E. (1990) The effect of depolarization on expression of the human proenkephalin gene is synergistic with cAMP and dependent upon a cAMP-inducible enhancer. J. Neurosci.10, 2825–2833. PubMed Google Scholar
Comb M., Mermod N., Hyman S. E., Pearlberg J., Ross M. E., and Goodman H. M. (1988) Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J.7, 3793–3805. PubMedCAS Google Scholar
Hyman S. E., Comb M., Pearlberg J., and Goodman H. M. (1989) An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene. Mol. Cell. Biol.9, 321–324. PubMedCAS Google Scholar
Konardi C., Cole R. L., Green D., Senatus P., Leveque J. C., Pollack A. E., Grossbard S. J., and Hyman S. E. (1995) Analysis of the proenkephalin second messenger-inducible enhancer in rat striatal cultures. J. Neurochem.65, 1007–1015. Article Google Scholar
Nestler E. J., Hope B. T., and Widnell K. L. (1993) Drug addiction: a model for the molecular basis of neural plasticity. Neuron11, 995–1006. ArticlePubMedCAS Google Scholar
Sheu M. J., Sribanditmongkol P., Santosa D. N., and Tejwani G. A. (1995) Inhibition of morphine tolerance and dependence by diazepam and its relation to cyclic AMP levels in discrete rat brain regions and spinal cord. Brain Res.675, 31–37. ArticlePubMedCAS Google Scholar
Lightman S. L. and Young W. S. D. (1987) Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal. Nature328, 643–645. ArticlePubMedCAS Google Scholar
Tempel A., Kessler J. A., and Zukin R. S. (1990) Chronic naltrexone treatment increases expression of preproenkephalin and preprotachykinin mRNA in discrete brain regions. J. Neurosci.10, 741–747. PubMedCAS Google Scholar
Uhl G. R., Ryan J. P., and Schwartz J. P. (1988) Morphine alters preproenkephalin gene expression. Brain Res.459, 391–397. ArticlePubMedCAS Google Scholar
Delle M., Ricksten S., Haggendal J., Olsson K., Skarphedinsson J., and Thoren P. (1990) Regional changes in sympathetic nerve activity and baroreceptor reflex function and arterial plasma levels of catecholamines, renin and vasopressin during naloxone precipitated morphine withdrawal in rats. J. Pharmacol. Exp. Ther.253, 646–654. PubMedCAS Google Scholar
Paxinos G. and Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic, New York. Google Scholar
Van Bockstaele E. J., Commons K., and Pickel V. M. (1997) Delta-opioid receptor is present in presynaptic axon terminals in the rat nucleus locus coeruleus: relationships with methion-ine5-enkephalin. J. Comp. Neurol.388, 575–586. ArticlePubMed Google Scholar
Van Bockstaele E. J., Colago E. E., Cheng P., Moriwaki A., Uhl G. R., and Pickel V. M. (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J. Neurosci.16, 5037–5048. Google Scholar